GithubHelp home page GithubHelp logo

jiaoyining / darts Goto Github PK

View Code? Open in Web Editor NEW

This project forked from nyumedml/darts

0.0 2.0 0.0 38.51 MB

Code for DARTS: DenseUnet-based Automatic Rapid Tool for brain Segmentation

License: GNU General Public License v3.0

Jupyter Notebook 99.75% Python 0.25%

darts's Introduction

DenseUnet-based Automatic Rapid brain Segmentation (DARTS)

Paper Associated with the project

Here is the paper describing the project and experiments in detail.

Package

The DARTS package can be installed using:

pip install DARTSeg

Download the pretrained model from here and follow the steps to perform segmentation

from DARTS import Segmentation
seg_obj = Segmentation(model_wts_path='./saved_model_wts/dense_unet_saggital_finetuned.pth', model_type="dense-unet", use_gpu=False)
seg_out, seg_proba_out = seg_obj.predict(inputs="T1.mgz")

Deep learning models for brain MR segmentation

We pretrain our Dense Unet model using the Freesurfer segmentations of 1113 subjects available in the Human Connectome Project dataset and fine-tuned the model using 101 manually labeled brain scans from Mindboggle dataset.

The model is able to perform the segmentation of complete brain within a minute (on a machine with single GPU). The model labels 102 regions in the brain making it the first model to segment more than 100 brain regions within a minute. The details of 102 regions can be found below.

Quantitative Results on the Mindboggle held out data

The box plot compares the dice scores of different ROIs for Dense U-Net and U-Net. The Dense U-Net consistently outperforms U-Net and achieves good dice scores for most of the ROIs.

Quanlitative Results on the HCP held out data

We perform an expert reader evaluation to measure and compare the proposed deep learning models' performance with Freesurfer model. We use HCP held-out test set scans for reader study. On these scans, Freesurfer results have undergone a manual quality control. We also compare the non-finetuned and fine-tuned model with Freesurfer model with manual QC. Seven regions of interest (ROIs) were selected:L/R Putamen (axial view), L/R Pallidum (axial view), L/R Caudate (axial view), L/R Thalamus (axial view), L/R Lateral Ventricles (axial view), L/R Insula (axial view) and L/R Cingulate Gyrus (sagittal view).The readers rated each example on a Likert-type scale from 1 (Poor) to 5 (Excellent).

Based on the readers' ratings, we investigate if there are statistically significant differences between the three methods using paired T-test and Wilcoxon signed rank test at 95% significance level. The results can be seen below.

Using Pretrained models for performing complete brain segmentation

The users can use the pre-trained models to perform a complete brain MR segmentation. For using the coronally pre-trained models, the user will have to execute the perform_pred.py script. An illustration can be seen in predicting_segmentation_illustration.ipynb notebook.

The following code block could be used to perform the prediction:

usage: perform_pred.py [-h] [--input_image_path INPUT_IMAGE_PATH]
                       [--segmentation_dir_path SEGMENTATION_DIR_PATH]
                       [--file_name FILE_NAME] [--model_type MODEL_TYPE]
                       [--model_wts_path MODEL_WTS_PATH] [--is_mgz [IS_MGZ]]
                       [--save_prob [SAVE_PROB]] [--use_gpu [USE_GPU]]

optional arguments:
  -h, --help            show this help message and exit
  --input_image_path INPUT_IMAGE_PATH
                        Path to input image (can be of .mgz or .nii.gz
                        format)(required)
  --segmentation_dir_path SEGMENTATION_DIR_PATH
                        Directory path to save the output segmentation
                        (required)
  --file_name FILE_NAME
                        Name of the segmentation file (required)
  --model_type MODEL_TYPE
                        Model types: "dense-unet", "unet" (default: "dense-
                        unet")
  --model_wts_path MODEL_WTS_PATH
                        Path for model wts to be used (default='./saved_model_
                        wts/dense_unet_back2front_finetuned.pth')
  --is_mgz [IS_MGZ]     Is the image in .mgz format (default=False, default
                        format is .nii.gz)
  --save_prob [SAVE_PROB]
                        Should the softmax prob values for each voxel be saved
                        ? (default: False)
  --use_gpu [USE_GPU]   Use GPU for inference? (default: True)

An example could look something like this:

python3 perform_pred.py --input_image_path './../../../data_orig/199251/mri/T1.mgz' \
--segmentation_dir_path './sample_pred/' \
--file_name '199251' \
--is_mgz True \
--model_wts_path './saved_model_wts/dense_unet_back2front_non_finetuned.pth' \
--save_prob False \
--use_gpu True \
--save_prob False

Pretrained model wts

Pretrained model wts can be downloaded from here.

There are two model architectures: Dense U-Net and U-Net. Each of the model is trained using 2D slices extracted coronally, sagittally,or axially. The name of the model will contain the orientation and model architecture information.

Output segmentation

The output segmentation has 103 labeled segments with the last one being the None class. The labels of the segmentation closely resembles the aseg+aparc segmentation protocol of Freesurfer.

We exclude 4 brain regions that are not common to a normal brain: White matter and non-white matter hypointentisites, left and right frontal and temporal poles. We also excluded left and right 'unknown' segments. We also exclude left and right bankssts as there is no common definition for these segments that is widely accepted by the neuroradiology community.

The complete list of class number and the corresponding segment name can be found here as a pickled object or here as a .txt file.

Sample Predicitons

Insula

Here we can clearly see that Freesurfer (FS) incorrectly predicts the right insula segment, the model trained only using FS segmentations also learns a wrong prediction. Our proposed model which is finetuned on manually annotated dataset correctly captures the region. Moreover, the segment looks biologically natural unlike FS's segmentation which is grainy, noisy and with non-smooth boundaries.

Putamen

Here again, we see that FS segmentation is of low quality but our proposed fine-tuned model performs well and produces more natural looking segmentation.

Pallidum

FS segmentation for pallidum also of low quality, but the proposed model performs well.

More predicitons

Some sample predictions for Putamen, Caudate, Hippocampus and Insula can be seen here. In all the images, prediction 1 = Freesurfer, Prediction 2 = Non-Finetuned Dense Unet, Prediction 3 = Finetuned Dense Unet.

It could be seen that Freesurfer often make errors in determining the accurate boundaries whereas the deep learning based models have natural looking ROIs with accurate boundaries.

Contact

If you have any questions regarding the code, please contact ark576[at]nyu.edu or raise an issue on the github repo.

darts's People

Contributors

aakashrkaku avatar hegdechaitra avatar narges-rzv avatar

Watchers

 avatar  avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.