GithubHelp home page GithubHelp logo

Comments (4)

marlin-codes avatar marlin-codes commented on July 23, 2024 1

Thanks for your question. The three variables are list:

  • d0 records the root (HC point) distance to the origin and its length equal to the number of real epochs
  • d2 records the mean distance to the origin and its length equal to the number of real epochs
  • hdo records all node distance to the origin and its length equal to the number of nodes

from hie.

marlin-codes avatar marlin-codes commented on July 23, 2024

Thanks for your interest! The following is our code for the HDO figure, for your information.

from os.path import expanduser
import matplotlib.font_manager as font_manager
fontpath = expanduser('~/.local/share/fonts/LinLibertine_R.ttf')
prop = font_manager.FontProperties(fname=fontpath)
from matplotlib.pyplot import MultipleLocator

def one(f):
    return '{:.1f}'.format(f)

def plot_HDO_distribution():
    import numpy as np
    import matplotlib.pyplot as plt
    def get_colors(length, i):
        if i == 0:
            return plt.cm.plasma(np.linspace(-0.5, 1, length))
        else:
            return plt.cm.cool(np.linspace(-0.5, 1, length))

    filepath = './results/distance_curv/icml23/dist_data_final/'
    for dim in [16, 64, 256]:
        for dataset in ['cora', 'citeseer', 'disease_nc', 'airport']:
            data0 = np.loadtxt(filepath + '{}/{}_{}/{}_HDO0.txt'.format(dataset, dataset, dim, dataset))
            data1 = np.loadtxt(filepath + '{}/{}_{}/{}_HDO1.txt'.format(dataset, dataset, dim, dataset))

            key_nodes0 = np.loadtxt(filepath + '{}/{}_{}/{}_d20.txt'.format(dataset, dataset, dim, dataset))
            key_nodes1 = np.loadtxt(filepath + '{}/{}_{}/{}_d21.txt'.format(dataset, dataset, dim, dataset))

            dist0 = np.expand_dims(data0, 1)
            dist1 = np.expand_dims(data1, 1)
            minvalue0, center0, meanvalue0, maxvalue0 = key_nodes0
            minvalue1, center1, meanvalue1, maxvalue1 = key_nodes1
            plt.xlim([0, 8.5])
            plt.ylim([0, 0.5])
            margin = 0.1
            freqs0 = []
            freqs1 = []
            for r in np.arange(0, 7, margin):
                freqs0.append(np.where((dist0 > r) & (dist0 < r + margin))[0].shape[0])
                freqs1.append(np.where((dist1 > r) & (dist1 < r + margin))[0].shape[0])
            # colors0 = get_colors(len(freqs0), 1)
            # colors1 = get_colors(len(freqs0), 0)
            plt.bar(np.arange(0, 7, margin), np.array(freqs0) / np.sum(freqs0), color="#1F77B4", edgecolor="white",
                    width=margin, alpha=0.8, label='HGCN')
            plt.bar(np.arange(0, 7, margin), np.array(freqs1) / np.sum(freqs1), color="#FE7E0D", edgecolor="white",
                    width=margin, alpha=0.9, label='Ours')
            plt.legend(loc='upper right', prop={'size': 15})
            row_labels = ['STATS', 'ROOT', 'MIN', 'MEAN', 'MAX']  # ROOT/ HC
            table_vals = [['HGCN', 'Ours'],
                          [one(center0), one(center1)],
                          [one(minvalue0), one(minvalue1)],
                          [one(meanvalue0), one(meanvalue1)],
                          [one(maxvalue0), one(maxvalue1)]
                          ]
            the_table = plt.table(cellText=table_vals, colWidths=[0.12] * 2,
                                  rowLabels=row_labels,
                                  colLoc='center', rowLoc='left', cellLoc='center',
                                  edges='closed',
                                  bbox=(0.20, 0.55, 0.27, 0.4))
            the_table.auto_set_font_size(False)
            the_table.set_fontsize(14)
            plt.title('{}'.format(dataset.capitalize()) + '($\mathcal{H}^{%d}$)' % dim, fontproperties=prop,
                      fontsize=20)
            plt.yticks(fontproperties=prop, size=20)
            plt.xticks(fontproperties=prop, size=20)
            ax = plt.gca()
            x_major_locator = MultipleLocator(1)
            ax.xaxis.set_major_locator(x_major_locator)
            plt.savefig('./results/icml2023/hdo/pdf/{}_{}.pdf'.format(dataset, dim), bbox_inches='tight', pad_inches=0)
            plt.clf()

The HDO is computed by

if self.manifold.name == 'PoincareBall':
     d2 = self.manifold.dist0(embeddings, c=c).mean()

from hie.

wenjiyanli avatar wenjiyanli commented on July 23, 2024

It is very clear. I greatly appreciate your help!

from hie.

wenjiyanli avatar wenjiyanli commented on July 23, 2024

I hope I'm not being too bothersome with another question, but could you please provide more details on how to compute 'self.d0', 'self.d2', and 'self.hdo'? I guess that 'd2' below might be used to compute 'self.hdo', but I'm unsure about the methods for calculating 'self.d0' and 'self.d2' in the NCModel. Could you clarify the differences between them for me?"

if self.manifold.name == 'PoincareBall':
     d2 = self.manifold.dist0(embeddings, c=c).mean()
class NCModel(BaseModel):
    def __init__(self, args):
        super(NCModel, self).__init__(args)
        self.args = args
        self.decoder = model2decoder[args.model](self.c, args)
        if args.n_classes > 2:
            self.f1_average = 'micro'
        else:
            self.f1_average = 'binary'
        if args.pos_weight:
            self.weights = torch.Tensor([1., 1. / data['labels'][idx_train].mean()])
        else:
            self.weights = torch.Tensor([1.] * args.n_classes)
        if not args.cuda == -1:
            self.weights = self.weights.to(args.device)
        self.d0 = []
        self.d2 = []
        self.hdo = []
        self.center = None
        self.activation = lambda x: x

I would greatly appreciate any additional details you can provide. Thank you for your patience and assistance.

from hie.

Related Issues (2)

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.