GithubHelp home page GithubHelp logo

PyPI - License Build Status Documentation Status PyPI - Python Versions PyPI - Downloads PyPI - Status Code Coverage

python-constraint

This software is now back to active development / maintainance status.
For an overview of recent changes, visit the Changelog.
The complete documentation can be found here.

The python-constraint module offers efficient solvers for Constraint Satisfaction Problems (CSPs) over finite domains in an accessible Python package. CSP is class of problems which may be represented in terms of variables (a, b, ...), domains (a in [1, 2, 3], ...), and constraints (a < b, ...).

Basics

This interactive Python session demonstrates basic operations:

>>> from constraint import *
>>> problem = Problem()
>>> problem.addVariable("a", [1,2,3])
>>> problem.addVariable("b", [4,5,6])
>>> problem.getSolutions()
[{'a': 3, 'b': 6}, {'a': 3, 'b': 5}, {'a': 3, 'b': 4},
 {'a': 2, 'b': 6}, {'a': 2, 'b': 5}, {'a': 2, 'b': 4},
 {'a': 1, 'b': 6}, {'a': 1, 'b': 5}, {'a': 1, 'b': 4}]

>>> problem.addConstraint(lambda a, b: a*2 == b,
                          ("a", "b"))
>>> problem.getSolutions()
[{'a': 3, 'b': 6}, {'a': 2, 'b': 4}]

>>> problem = Problem()
>>> problem.addVariables(["a", "b"], [1, 2, 3])
>>> problem.addConstraint(AllDifferentConstraint())
>>> problem.getSolutions()
[{'a': 3, 'b': 2}, {'a': 3, 'b': 1}, {'a': 2, 'b': 3},
 {'a': 2, 'b': 1}, {'a': 1, 'b': 2}, {'a': 1, 'b': 3}]

Rooks problem

The following example solves the classical Eight Rooks problem:

>>> problem = Problem()
>>> numpieces = 8
>>> cols = range(numpieces)
>>> rows = range(numpieces)
>>> problem.addVariables(cols, rows)
>>> for col1 in cols:
...     for col2 in cols:
...         if col1 < col2:
...             problem.addConstraint(lambda row1, row2: row1 != row2,
...                                   (col1, col2))
>>> solutions = problem.getSolutions()
>>> solutions
>>> solutions
[{0: 7, 1: 6, 2: 5, 3: 4, 4: 3, 5: 2, 6: 1, 7: 0},
 {0: 7, 1: 6, 2: 5, 3: 4, 4: 3, 5: 2, 6: 0, 7: 1},
 {0: 7, 1: 6, 2: 5, 3: 4, 4: 3, 5: 1, 6: 2, 7: 0},
 {0: 7, 1: 6, 2: 5, 3: 4, 4: 3, 5: 1, 6: 0, 7: 2},
 ...
 {0: 7, 1: 5, 2: 3, 3: 6, 4: 2, 5: 1, 6: 4, 7: 0},
 {0: 7, 1: 5, 2: 3, 3: 6, 4: 1, 5: 2, 6: 0, 7: 4},
 {0: 7, 1: 5, 2: 3, 3: 6, 4: 1, 5: 2, 6: 4, 7: 0},
 {0: 7, 1: 5, 2: 3, 3: 6, 4: 1, 5: 4, 6: 2, 7: 0},
 {0: 7, 1: 5, 2: 3, 3: 6, 4: 1, 5: 4, 6: 0, 7: 2},
 ...]

Magic squares

This example solves a 4x4 magic square:

>>> problem = Problem()
>>> problem.addVariables(range(0, 16), range(1, 16 + 1))
>>> problem.addConstraint(AllDifferentConstraint(), range(0, 16))
>>> problem.addConstraint(ExactSumConstraint(34), [0, 5, 10, 15])
>>> problem.addConstraint(ExactSumConstraint(34), [3, 6, 9, 12])
>>> for row in range(4):
...     problem.addConstraint(ExactSumConstraint(34),
                              [row * 4 + i for i in range(4)])
>>> for col in range(4):
...     problem.addConstraint(ExactSumConstraint(34),
                              [col + 4 * i for i in range(4)])
>>> solutions = problem.getSolutions()

The following solvers are available:

  • Backtracking solver
  • Optimized backtracking solver
  • Recursive backtracking solver
  • Minimum conflicts solver

Predefined constraint types currently available:

  • FunctionConstraint
  • AllDifferentConstraint
  • AllEqualConstraint
  • MaxSumConstraint
  • ExactSumConstraint
  • MinSumConstraint
  • MaxProdConstraint
  • MinProdConstraint
  • InSetConstraint
  • NotInSetConstraint
  • SomeInSetConstraint
  • SomeNotInSetConstraint

Documentation for the module is available at: http://python-constraint.github.io/python-constraint/. It can be built locally by running make clean html from the docs folder. For viewing RST files locally, restview is recommended.

$ pip install python-constraint

Run nox (tests for all supported Python versions in own virtual environment).

To test against your local Python version: make sure you have the development dependencies installed. Run pytest (optionally add --no-cov if you have the C-extensions enabled).

Feel free to contribute by submitting pull requests or opening issues. Please refer to the contribution guidelines before doing so.

This GitHub organization and repository is a global effort to help to maintain python-constraint, which was written by Gustavo Niemeyer and originaly located at https://labix.org/python-constraint. For an overview of recent changes, visit the Changelog.

Planned development:

  • Add a string parser for constraints
  • Add parallel-capable solver
  • Versioned documentation

But it's probably better to open an issue.

python-constraint's Projects

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.