GithubHelp home page GithubHelp logo

00mjk / quantum_edward Goto Github PK

View Code? Open in Web Editor NEW

This project forked from artiste-qb-net/quantum_edward

0.0 0.0 0.0 29 KB

Python tools for supervised learning by Quantum Neural Networks

License: MIT License

Python 100.00%

quantum_edward's Introduction

Quantum Edward

Installation

You can install Quantum Edward from the Python package manager pip using:

pip install quantum_edward --user

If you are useing JupyterNotebook, use:

!pip install quantum_edward --user

and restart the kernel.

Quantum Edward at this point is just a small library of Python tools for doing classical supervised learning on Quantum Neural Networks (QNNs).

An analytical model of the QNN is entered as input into QEdward and the training is done on a classical computer, using training data already available (e.g., MNIST), and using the famous BBVI (Black Box Variational Inference) method described in Reference 1 below.

The input analytical model of the QNN is given as a sequence of gate operations for a gate model quantum computer. The hidden variables are angles by which the qubits are rotated. The observed variables are the input and output of the quantum circuit. Since it is already expressed in the qc's native language, once the QNN has been trained using QEdward, it can be run immediately on a physical gate model qc such as the ones that IBM and Google have already built. By running the QNN on a qc and doing classification with it, we can compare the performance in classification tasks of QNNs and classical artificial neural nets (ANNs).

Other workers have proposed training a QNN on an actual physical qc. But current qc's are still fairly quantum noisy. Training an analytical QNN on a classical computer might yield better results than training it on a qc because in the first strategy, the qc's quantum noise does not degrade the training.

The BBVI method is a mainstay of the "Edward" software library. Edward uses Google's TensorFlow lib to implement various inference methods (Monte Carlo and Variational ones) for Classical Bayesian Networks and for Hierarchical Models. H.M.s (pioneered by Andrew Gelman) are a subset of C.B. nets (pioneered by Judea Pearl). Edward is now officially a part of TensorFlow, and the original author of Edward, Dustin Tran, now works for Google. Before Edward came along, TensorFlow could only do networks with deterministic nodes. With the addition of Edward, TensorFlow now can do nets with both deterministic and non-deterministic (probabilistic) nodes.

This first baby-step lib does not do distributed computing. The hope is that it can be used as a kindergarten to learn about these techniques, and that then the lessons learned can be used to write a library that does the same thing, classical supervised learning on QNNs, but in a distributed fashion using Edward/TensorFlow on the cloud.

The first version of Quantum Edward analyzes two QNN models called NbTrols and NoNbTrols. These two models were chosen because they are interesting to the author, but the author attempted to make the library general enough so that it can accommodate other akin models in the future. The allowable models are referred to as QNNs because they consist of 'layers', as do classical ANNs (Artificial Neural Nets). TensorFlow can analyze layered models (e.g., ANN) or more general DAG (directed acyclic graph) models (e.g., Bayesian networks).

This software is distributed under the MIT License.

References

  1. R. Ranganath, S. Gerrish, D. M. Blei, "Black Box Variational Inference", https://arxiv.org/abs/1401.0118

  2. https://en.wikipedia.org/wiki/Stochastic_approximation discusses Robbins-Monro conditions

  3. https://github.com/keyonvafa/logistic-reg-bbvi-blog/blob/master/log_reg_bbvi.py

  4. http://edwardlib.org/

  5. https://discourse.edwardlib.org/

quantum_edward's People

Contributors

rrtucci avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.