GithubHelp home page GithubHelp logo

adrlil / sifrank Goto Github PK

View Code? Open in Web Editor NEW

This project forked from sunyilgdx/sifrank

0.0 0.0 0.0 5.95 MB

The code of our paper "SIFRank: A New Baseline for Unsupervised Keyphrase Extraction Based on Pre-trained Language Model"

Python 100.00%

sifrank's Introduction

SIFRank

The code of our paper SIFRank: A New Baseline for Unsupervised Keyphrase Extraction Based on Pre-trained Language Model

Versions Notes

  • 2020/02/21——Initial version Provided the most basic functions.
  • 2020/02/28——Second version Added new algorithms DS(document segmentation) and EA(embeddings alignment) to speed up SIFRank and SIFRank+.
  • 2020/03/02——Third version A little change of SIFRank+ in ./model/method.py about making a simple normalization of position_score.

Environment

Python 3.6
nltk 3.4.3
StanfordCoreNLP 3.9.1.1
torch 1.1.0
allennlp 0.8.4

Download

  • ELMo elmo_2x4096_512_2048cnn_2xhighway_options.json and elmo_2x4096_512_2048cnn_2xhighway_weights.hdf5 from here , and save it to the auxiliary_data/ directory
  • StanfordCoreNLP stanford-corenlp-full-2018-02-27 from here, and save it to anywhere

Usage

import nltk
from embeddings import sent_emb_sif, word_emb_elmo
from model.method import SIFRank, SIFRank_plus
from stanfordcorenlp import StanfordCoreNLP
import time

#download from https://allennlp.org/elmo
options_file = "../auxiliary_data/elmo_2x4096_512_2048cnn_2xhighway_options.json"
weight_file = "../auxiliary_data/elmo_2x4096_512_2048cnn_2xhighway_weights.hdf5"

porter = nltk.PorterStemmer()
ELMO = word_emb_elmo.WordEmbeddings(options_file, weight_file, cuda_device=0)
SIF = sent_emb_sif.SentEmbeddings(ELMO, lamda=1.0)
en_model = StanfordCoreNLP(r'E:\Python_Files\stanford-corenlp-full-2018-02-27',quiet=True)#download from https://stanfordnlp.github.io/CoreNLP/
elmo_layers_weight = [0.0, 1.0, 0.0]

text = "Discrete output feedback sliding mode control of second order systems - a moving switching line approach The sliding mode control systems (SMCS) for which the switching variable is designed independent of the initial conditions are known to be sensitive to parameter variations and extraneous disturbances during the reaching phase. For second order systems this drawback is eliminated by using the moving switching line technique where the switching line is initially designed to pass the initial conditions and is subsequently moved towards a predetermined switching line. In this paper, we make use of the above idea of moving switching line together with the reaching law approach to design a discrete output feedback sliding mode control. The main contributions of this work are such that we do not require to use system states as it makes use of only the output samples for designing the controller. and by using the moving switching line a low sensitivity system is obtained through shortening the reaching phase. Simulation results show that the fast output sampling feedback guarantees sliding motion similar to that obtained using state feedback"
keyphrases = SIFRank(text, SIF, en_model, N=15,elmo_layers_weight=elmo_layers_weight)
keyphrases_ = SIFRank_plus(text, SIF, en_model, N=15, elmo_layers_weight=elmo_layers_weight)
print(keyphrases)
print(keyphrases_)

Evaluate the model

Use this eval/sifrank_eval.py to evaluate SIFRank on Inspec, SemEval2017 and DUC2001 datasets We also have evaluation codes for other baseline models. We will organize and upload them later, so stay tuned. F1 score when the number of keyphrases extracted N is set to 5.

Models Inspec SemEval2017 DUC2001
TFIDF 11.28 12.70 9.21
YAKE 15.73 11.84 10.61
TextRank 24.39 16.43 13.94
SingleRank 24.69 18.23 21.56
TopicRank 22.76 17.10 20.37
PositionRank 25.19 18.23 24.95
Multipartite 23.05 17.39 21.86
RVA 21.91 19.59 20.32
EmbedRank d2v 27.20 20.21 21.74
SIFRank 29.11 22.59 24.27
SIFRank+ 28.49 21.53 30.88

Cite

If you use this code, please cite this paper

@article{DBLP:journals/access/SunQZWZ20,
  author    = {Yi Sun and
               Hangping Qiu and
               Yu Zheng and
               Zhongwei Wang and
               Chaoran Zhang},
  title     = {SIFRank: {A} New Baseline for Unsupervised Keyphrase Extraction Based
               on Pre-Trained Language Model},
  journal   = {{IEEE} Access},
  volume    = {8},
  pages     = {10896--10906},
  year      = {2020},
  url       = {https://doi.org/10.1109/ACCESS.2020.2965087},
  doi       = {10.1109/ACCESS.2020.2965087},
  timestamp = {Fri, 07 Feb 2020 12:04:22 +0100},
  biburl    = {https://dblp.org/rec/journals/access/SunQZWZ20.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.