GithubHelp home page GithubHelp logo

calculus.jl's Introduction

Calculus.jl

Build Status Coverage Status Calculus Calculus

Introduction

The Calculus package provides tools for working with the basic calculus operations of differentiation and integration. You can use the Calculus package to produce approximate derivatives by several forms of finite differencing or to produce exact derivative using symbolic differentiation. You can also compute definite integrals by different numerical methods.

API

Most users will want to work with a limited set of basic functions:

  • derivative(): Use this for functions from R to R
  • second_derivative(): Use this for functions from R to R
  • Calculus.gradient(): Use this for functions from R^n to R
  • hessian(): Use this for functions from R^n to R
  • differentiate(): Use this to perform symbolic differentiation
  • simplify(): Use this to perform symbolic simplification
  • deparse(): Use this to get usual infix representation of expressions

Usage Examples

There are a few basic approaches to using the Calculus package:

  • Use finite-differencing to evaluate the derivative at a specific point
  • Use higher-order functions to create new functions that evaluate derivatives
  • Use symbolic differentiation to produce exact derivatives for simple functions

Direct Finite Differencing

using Calculus

# Compare with cos(0.0)
derivative(sin, 0.0)
# Compare with cos(1.0)
derivative(sin, 1.0)
# Compare with cos(pi)
derivative(sin, float(pi))

# Compare with [cos(0.0), -sin(0.0)]
Calculus.gradient(x -> sin(x[1]) + cos(x[2]), [0.0, 0.0])
# Compare with [cos(1.0), -sin(1.0)]
Calculus.gradient(x -> sin(x[1]) + cos(x[2]), [1.0, 1.0])
# Compare with [cos(pi), -sin(pi)]
Calculus.gradient(x -> sin(x[1]) + cos(x[2]), [float64(pi), float64(pi)])

# Compare with -sin(0.0)
second_derivative(sin, 0.0)
# Compare with -sin(1.0)
second_derivative(sin, 1.0)
# Compare with -sin(pi)
second_derivative(sin, float64(pi))

# Compare with [-sin(0.0) 0.0; 0.0 -cos(0.0)]
hessian(x -> sin(x[1]) + cos(x[2]), [0.0, 0.0])
# Compare with [-sin(1.0) 0.0; 0.0 -cos(1.0)]
hessian(x -> sin(x[1]) + cos(x[2]), [1.0, 1.0])
# Compare with [-sin(pi) 0.0; 0.0 -cos(pi)]
hessian(x -> sin(x[1]) + cos(x[2]), [float64(pi), float64(pi)])

Higher-Order Functions

using Calculus

g1 = derivative(sin)
g1(0.0)
g1(1.0)
g1(pi)

g2 = Calculus.gradient(x -> sin(x[1]) + cos(x[2]))
g2([0.0, 0.0])
g2([1.0, 1.0])
g2([pi, pi])

h1 = second_derivative(sin)
h1(0.0)
h1(1.0)
h1(pi)

h2 = hessian(x -> sin(x[1]) + cos(x[2]))
h2([0.0, 0.0])
h2([1.0, 1.0])
h2([pi, pi])

Prime Notation

For scalar functions that map R to R, you can use the ' operator to calculate derivatives as well. This operator can be used abritratily many times, but you should keep in mind that the approximation degrades with each approximate derivative you calculate:

using Calculus

f(x) = sin(x)
f'(1.0) - cos(1.0)
f''(1.0) - (-sin(1.0))
f'''(1.0) - (-cos(1.0))

Symbolic Differentiation

using Calculus

differentiate("cos(x) + sin(x) + exp(-x) * cos(x)", :x)
differentiate("cos(x) + sin(y) + exp(-x) * cos(y)", [:x, :y])

Numerical Integration

The Calculus package no longer provides routines for univariate numerical integration. Use QuadGK.jl instead.

Credits

Calculus.jl is built on contributions from:

  • John Myles White
  • Tim Holy
  • Andreas Noack Jensen
  • Nathaniel Daw
  • Blake Johnson
  • Avik Sengupta
  • Miles Lubin

And draws inspiration and ideas from:

  • Mark Schmidt
  • Jonas Rauch

calculus.jl's People

Contributors

ararslan avatar aviks avatar chrisrackauckas avatar dmbates avatar eriktaubeneck avatar fcard avatar garrison avatar giordano avatar godisemo avatar iainnz avatar ivarne avatar jakeconnor avatar jeff-regier avatar joehuchette avatar johnmyleswhite avatar jrevels avatar juliatagbot avatar keno avatar magistere avatar mlubin avatar musm avatar mzaffalon avatar powerdistribution avatar rened avatar rgiordan avatar stevengj avatar tanmaykm avatar timholy avatar yuyichao avatar

Watchers

 avatar  avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.