GithubHelp home page GithubHelp logo

blazyy / movie-revenue-prediction Goto Github PK

View Code? Open in Web Editor NEW
0.0 2.0 0.0 878 KB

A project on predicting movie revenue using a variety of machine learning techniques.

Home Page: https://faaez.co.in/data-science-03

Jupyter Notebook 100.00%

movie-revenue-prediction's Introduction

Initialization

import pandas as pd
from datetime import datetime
import numpy as np
from numpy import sqrt
import seaborn as sns
import matplotlib.pyplot as plt
import matplotlib.style as style
from ast import literal_eval
from sklearn.preprocessing import OneHotEncoder, LabelEncoder
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import power_transform
from sklearn.model_selection import train_test_split, cross_val_score, cross_val_predict
from sklearn import metrics
from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error
from sklearn.svm import SVR
from sklearn.tree import DecisionTreeRegressor
import statsmodels.api as sm
import statsmodels
import statsmodels.stats.api as sms
from statsmodels.stats.diagnostic import het_white
from statsmodels.compat import lzip
from sklearn.utils import check_array
from scipy import stats
from scipy.special import boxcox1p
from tqdm import tqdm_notebook
from sklearn.model_selection import validation_curve
from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import LinearRegression
from sklearn.pipeline import make_pipeline

%matplotlib inline
#style.use('seaborn-poster') #sets the size of the charts
style.use('ggplot')

#!sudo apt-get install python-sklearn

import warnings
warnings.filterwarnings('ignore')
movies1 = pd.read_csv('movies_metadata.csv')
movies2 = pd.read_csv('movie_metadata.csv')

Data Cleaning & Preprocessing

print(movies1.shape)
print(movies2.shape)
(45466, 24)
(5043, 28)
movies1.head(1)
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
</style>
adult belongs_to_collection budget genres homepage id imdb_id original_language original_title overview ... release_date revenue runtime spoken_languages status tagline title video vote_average vote_count
0 False {'id': 10194, 'name': 'Toy Story Collection', ... 30000000 [{'id': 16, 'name': 'Animation'}, {'id': 35, '... http://toystory.disney.com/toy-story 862 tt0114709 en Toy Story Led by Woody, Andy's toys live happily in his ... ... 1995-10-30 373554033.0 81.0 [{'iso_639_1': 'en', 'name': 'English'}] Released NaN Toy Story False 7.7 5415.0

1 rows × 24 columns

movies2.head(1)
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
</style>
color director_name num_critic_for_reviews duration director_facebook_likes actor_3_facebook_likes actor_2_name actor_1_facebook_likes gross genres ... num_user_for_reviews language country content_rating budget title_year actor_2_facebook_likes imdb_score aspect_ratio movie_facebook_likes
0 Color James Cameron 723.0 178.0 0.0 855.0 Joel David Moore 1000.0 760505847.0 Action|Adventure|Fantasy|Sci-Fi ... 3054.0 English USA PG-13 237000000.0 2009.0 936.0 7.9 1.78 33000

1 rows × 28 columns

Both datasets are amazing but one is massive compared to another. I want to know if I should combine both to get more features but lesser samples which could possibly increase accuracy, or should I use the dataset with 40k and rely on training samples alone. I'll try the former option first.

movies2['imdb_id'] = movies2['movie_imdb_link'].apply(lambda x: x.split('/')[4])
movies = pd.merge(left = movies1, right = movies2, left_on = 'imdb_id', right_on = 'imdb_id')

Since I'm using two datasets, there are overlapping features. I will discard the redundants with lesser data. For example, if one dataset has more genre specification than the other, I will prefer it more.

Removing null values:

movies.head(1)
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
</style>
adult belongs_to_collection budget_x genres_x homepage id imdb_id original_language original_title overview ... num_user_for_reviews language country content_rating budget_y title_year actor_2_facebook_likes imdb_score aspect_ratio movie_facebook_likes
0 False {'id': 10194, 'name': 'Toy Story Collection', ... 30000000 [{'id': 16, 'name': 'Animation'}, {'id': 35, '... http://toystory.disney.com/toy-story 862 tt0114709 en Toy Story Led by Woody, Andy's toys live happily in his ... ... 391.0 English USA G 30000000.0 1995.0 1000.0 8.3 1.85 0

1 rows × 52 columns

print(movies['genres_x'].fillna('[]').apply(literal_eval).apply(lambda x: len([i['name'] for i in x]) if isinstance(x, list) else []).mean())
print(movies['genres_y'].apply(lambda x: len(x.split("|"))).mean())
2.5678881592882865
2.9112476170302903

As evident from above, the genre feature from the second dataset has more data, so I will discard the genre column from the first. I'm not sure if this will help increase the prediction accuracy in anyway, but I'll give it a shot.

Also going to be taking only one genre from the list of genres. This will of course decrease accuracy but I don't know how to incorporate multiple genres into my algorithm. I could one-hot encode them, but that would mean my algorithm would give preference to movies with more listed genres, which is not an indicator of success.

movies['genre'] = movies['genres_y'].apply(lambda x: x.split("|")[0])
movies['genre'].unique()
array(['Adventure', 'Action', 'Comedy', 'Biography', 'Drama', 'Crime',
       'Documentary', 'Fantasy', 'Sci-Fi', 'Animation', 'Horror',
       'Film-Noir', 'Family', 'Western', 'Thriller', 'Musical', 'Mystery',
       'Romance', 'Music'], dtype=object)
movies.shape
(4721, 53)
'''
one_hot_genres = pd.get_dummies(movies['genre'], prefix = 'category')
one_hot_genre_cols = one_hot_genres.columns
movies = pd.concat([movies, one_hot_genres], axis=1, sort = False)
'''
"\none_hot_genres = pd.get_dummies(movies['genre'], prefix = 'category')\none_hot_genre_cols = one_hot_genres.columns\nmovies = pd.concat([movies, one_hot_genres], axis=1, sort = False)\n"

Another thing that I notice is discrepancies between similar columns, for example the gross/revenue. They seem to differ by a lot. How much? We'll find out.

(abs(movies['revenue'] - movies['gross']) / (movies['revenue'] + movies['gross']) * 100).mean()
43.07130868751626

43% difference. No thank you. After doing a bit of digging around, I find that the dataset movies2 contained movie revenue for USA alone, while movies1 has the global revenue. What I want is the former, so I will discard the 'revenue' column from movie1 and keep 'gross'.

There's another interesting column, 'belongs_to_collection'. I will binarize, as it makes sense as to conclude that a movie will earn more if it belongs to a collection.

movies['belongs_to_collection'] = movies['belongs_to_collection'].apply(lambda x: 0 if pd.isna(x) else 1)

Converting to datetime format for convenience.

months = ['Placeholder', 'Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']
movies['release_date'] = movies['release_date'].apply(lambda x: datetime.strptime(x, '%Y-%m-%d'))
movies['release_month'] = movies['release_date'].apply(lambda x: months[x.month])
movies['release_year'] = movies['release_date'].apply(lambda x: x.year)

Converting to lists:

movies['production_companies'] = movies['production_companies'].fillna('[]').apply(literal_eval).apply(lambda x: [i['name'] for i in x] if isinstance(x, list) else [])
movies['production_countries'] = movies['production_countries'].fillna('[]').apply(literal_eval).apply(lambda x: [i['name'] for i in x] if isinstance(x, list) else [])
movies['spoken_languages'] = movies['spoken_languages'].fillna('[]').apply(literal_eval).apply(lambda x: [i['name'] for i in x] if isinstance(x, list) else [])

Plot keywords will help a ton in building movie recommendation systems, but the goal here is to predict the profit of a movie. So it's of no use here.

columns_to_drop = ['revenue', 'movie_imdb_link', 'genres_x', 'genres_y', 'homepage', 'id', 'imdb_id', 'overview', 
                   'poster_path', 'status', 'tagline', 'movie_title', 'original_language', 'original_title', 'video',
                  'budget_x', 'language', 'country', 'adult', 'plot_keywords', 'aspect_ratio', 'runtime', 'title_year']
                   
movies = movies.drop(columns_to_drop, axis = 1).rename(columns = {'budget_y' : 'budget', 'gross' : 'revenue'})
movies = movies[movies['production_countries'].apply(lambda x: True if 'United States of America' in x else False)]
movies = movies[movies['spoken_languages'].apply(lambda x: True if 'English' in x else False)]
movies.median()
belongs_to_collection        0.000000e+00
popularity                   8.754132e+00
vote_average                 6.200000e+00
vote_count                   3.350000e+02
num_critic_for_reviews       1.250000e+02
duration                     1.050000e+02
director_facebook_likes      5.700000e+01
actor_3_facebook_likes       4.345000e+02
actor_1_facebook_likes       1.000000e+03
revenue                      3.240374e+07
num_voted_users              4.622100e+04
cast_total_facebook_likes    3.924000e+03
facenumber_in_poster         1.000000e+00
num_user_for_reviews         1.910000e+02
budget                       2.300000e+07
actor_2_facebook_likes       6.800000e+02
imdb_score                   6.500000e+00
movie_facebook_likes         2.090000e+02
release_year                 2.005000e+03
dtype: float64
print(movies.shape)
movies = movies.dropna()
#movies = movies.fillna(movies.median())
print(movies.shape)
(3943, 32)
(3358, 32)

Exploratory Data Analysis & Feature Selection

movies.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 3358 entries, 0 to 4713
Data columns (total 32 columns):
belongs_to_collection        3358 non-null int64
popularity                   3358 non-null object
production_companies         3358 non-null object
production_countries         3358 non-null object
release_date                 3358 non-null datetime64[ns]
spoken_languages             3358 non-null object
title                        3358 non-null object
vote_average                 3358 non-null float64
vote_count                   3358 non-null float64
color                        3358 non-null object
director_name                3358 non-null object
num_critic_for_reviews       3358 non-null float64
duration                     3358 non-null float64
director_facebook_likes      3358 non-null float64
actor_3_facebook_likes       3358 non-null float64
actor_2_name                 3358 non-null object
actor_1_facebook_likes       3358 non-null float64
revenue                      3358 non-null float64
actor_1_name                 3358 non-null object
num_voted_users              3358 non-null int64
cast_total_facebook_likes    3358 non-null int64
actor_3_name                 3358 non-null object
facenumber_in_poster         3358 non-null float64
num_user_for_reviews         3358 non-null float64
content_rating               3358 non-null object
budget                       3358 non-null float64
actor_2_facebook_likes       3358 non-null float64
imdb_score                   3358 non-null float64
movie_facebook_likes         3358 non-null int64
genre                        3358 non-null object
release_month                3358 non-null object
release_year                 3358 non-null int64
dtypes: datetime64[ns](1), float64(13), int64(5), object(13)
memory usage: 865.7+ KB
movies.describe().shape
(8, 18)
movies.describe()
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
</style>
belongs_to_collection vote_average vote_count num_critic_for_reviews duration director_facebook_likes actor_3_facebook_likes actor_1_facebook_likes revenue num_voted_users cast_total_facebook_likes facenumber_in_poster num_user_for_reviews budget actor_2_facebook_likes imdb_score movie_facebook_likes release_year
count 3358.000000 3358.000000 3358.000000 3358.000000 3358.000000 3358.000000 3358.000000 3358.000000 3.358000e+03 3.358000e+03 3358.000000 3358.000000 3358.000000 3.358000e+03 3358.000000 3358.000000 3358.000000 3358.000000
mean 0.250744 6.190887 954.145920 169.294223 110.233770 860.966647 824.218285 8135.464562 5.732073e+07 1.104946e+05 12190.299285 1.414532 351.083681 4.103701e+07 2171.393985 6.407058 9568.661108 2003.037522
std 0.433506 0.882913 1448.036597 124.773653 22.353895 3209.121228 1973.656712 15538.326953 7.243680e+07 1.567349e+05 19333.196884 2.099191 423.934717 4.410129e+07 4729.843994 1.055894 21847.848698 9.846291
min 0.000000 0.000000 0.000000 1.000000 37.000000 0.000000 0.000000 0.000000 1.620000e+02 1.030000e+02 0.000000 0.000000 6.000000 2.180000e+02 0.000000 1.600000 0.000000 1929.000000
25% 0.000000 5.700000 138.000000 78.000000 96.000000 11.000000 230.250000 807.250000 1.220310e+07 2.138275e+04 2172.250000 0.000000 116.000000 1.200000e+07 435.250000 5.800000 0.000000 1999.000000
50% 0.000000 6.200000 416.000000 140.000000 106.000000 65.000000 462.500000 2000.000000 3.395762e+07 5.703900e+04 4529.000000 1.000000 217.000000 2.600000e+07 723.000000 6.500000 245.000000 2004.000000
75% 1.000000 6.800000 1120.500000 226.000000 120.000000 241.000000 719.750000 13000.000000 7.266003e+07 1.353745e+05 16962.500000 2.000000 417.500000 5.500000e+07 1000.000000 7.100000 11000.000000 2010.000000
max 1.000000 9.300000 14075.000000 813.000000 330.000000 23000.000000 23000.000000 640000.000000 7.605058e+08 1.689764e+06 656730.000000 43.000000 5060.000000 3.000000e+08 137000.000000 9.300000 349000.000000 2016.000000

The extremely left skewed distribution is called a pareto distribution.

fig, ax = plt.subplots(figsize = (15, 5))
sns.distplot(movies['revenue'])
plt.xlabel('Revenue')
#fig.savefig('revenue_dist.png', format='png', dpi=1200)
#files.download("revenue_dist.png") 
Text(0.5, 0, 'Revenue')

png

from pylab import figure, text, scatter, show
fix, ax = plt.subplots()
plt.figure(figsize = (10, 5))
sns.regplot(x = movies['vote_count'], y = movies['revenue'], scatter_kws = {'s':2})
sns.despine(top = True, right = True)
#text(0.2, 1.0, 'Correlation: ' + str(np.corrcoef(movies['vote_count'], movies['revenue'])[0,1].round(4)), horizontalalignment='center', verticalalignment='center', transform = ax.transAxes)
#plt.savefig('corr.png', dpi = 1200)
#files.download('corr.png')

png

png

np.corrcoef(movies['vote_count'], movies['revenue'])[0, 1]
0.7514927348521296
plt.figure(figsize = (20, 10))
sns.countplot(x = 'release_year', data = movies, palette=("Blues_d"))
plt.xticks(rotation = 90, fontsize=8)
#plt.savefig('count_of_movies_each_year.png', dpi = 1200)
#files.download('count_of_movies_each_year.png')
(array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16,
        17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
        34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50,
        51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67,
        68, 69]), <a list of 70 Text xticklabel objects>)

png

Movies released before 1990 will not be taken into consideration as only a few movies are released.

pd.DataFrame(movies.groupby('release_year').sum()['budget'])
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
</style>
budget
release_year
1929 3.790000e+05
1933 4.390000e+05
1935 6.090000e+05
1936 1.500000e+06
1937 2.000000e+06
1939 6.777000e+06
1940 2.600000e+06
1946 1.010000e+07
1947 2.300000e+06
1948 3.700000e+06
1950 3.768785e+06
1952 4.000000e+06
1953 5.210000e+06
1954 9.100000e+05
1957 3.000000e+06
1959 2.883848e+06
1960 8.069470e+05
1961 6.000000e+06
1963 4.051500e+07
1964 2.600000e+07
1965 5.200000e+07
1968 1.200000e+07
1969 1.300000e+07
1970 5.150000e+07
1971 1.670000e+07
1972 6.010000e+06
1973 1.477700e+07
1974 3.206706e+07
1975 1.240000e+07
1976 9.960000e+06
... ...
1987 3.602500e+08
1988 4.192000e+08
1989 5.968600e+08
1990 8.792480e+08
1991 7.795000e+08
1992 8.481000e+08
1993 8.386000e+08
1994 1.499630e+09
1995 2.186925e+09
1996 2.977320e+09
1997 3.741000e+09
1998 4.006170e+09
1999 4.838312e+09
2000 5.359192e+09
2001 5.789840e+09
2002 6.093225e+09
2003 5.601130e+09
2004 6.379122e+09
2005 6.891215e+09
2006 6.323250e+09
2007 5.850065e+09
2008 6.860100e+09
2009 7.190425e+09
2010 7.858315e+09
2011 6.690365e+09
2012 7.433295e+09
2013 8.024550e+09
2014 7.423336e+09
2015 7.074595e+09
2016 4.572400e+09

70 rows × 1 columns

movies_after_1995 = movies[(movies['release_year'] >= 1995) & (movies['release_year'] != 2017)]
movies_numerical = movies_after_1995.select_dtypes(include = 'number').dropna()
pt = movies_after_1995.pivot_table(index = 'release_month', columns = 'release_year', values = 'revenue').reindex(index = months[1:])
fig, ax = plt.subplots(figsize=(15, 7)) 
ax.tick_params(axis="x", labelsize = 15)
ax.tick_params(axis="y", labelsize = 15)
sns.heatmap(pt)
#plt.savefig('heatmap.png', dpi = 1200)
#files.download('heatmap.png')
<matplotlib.axes._subplots.AxesSubplot at 0x21673af6780>

png

top_10_directors = list(movies.groupby('director_name').sum().sort_values(by = 'revenue', ascending = False).head(10).reset_index()['director_name'])
top_10_directors_revenue = list(movies.groupby('director_name').sum().sort_values(by = 'revenue', ascending = False).head(10).reset_index()['revenue'])
directors_and_revenue_dict = dict(zip(top_10_directors, top_10_directors_revenue))
movies_numerical['top_director'] = movies['director_name'].apply(lambda x: 1 if x in top_10_directors else 0)
movies.groupby('director_name').sum().sort_values(by = 'revenue', ascending = False).head(10).reset_index()[['director_name', 'revenue']]
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
</style>
director_name revenue
0 Steven Spielberg 4.114233e+09
1 Peter Jackson 2.286919e+09
2 Michael Bay 2.231243e+09
3 Tim Burton 2.071275e+09
4 Sam Raimi 2.049549e+09
5 James Cameron 1.948126e+09
6 Christopher Nolan 1.813228e+09
7 George Lucas 1.741418e+09
8 Joss Whedon 1.730887e+09
9 Robert Zemeckis 1.619309e+09
fig, ax = plt.subplots(figsize=(15, 7)) 
ax = sns.barplot(x = 'genre', y = 'revenue', data = movies, palette=("Blues_d"))
ax.set_xticklabels(ax.get_xticklabels(), rotation = 30)
plt.title('Average Revenue per Genre')
plt.show()
#plt.savefig('avg_revenue_genre.png', format = 'png', dpi = 1200)
#files.download('avg_revenue_genre.png')
#movies = movies.drop('genre', axis = 1)

png

movies_numerical['action_or_adventure'] = movies['genre'].apply(lambda x: 1 if x == 'Action' or x == 'Adventure' else 0)

Backward Elimination

Using a significance level (SL) of 0.05 (the industry standard), I will remove all features with a p-value greater than the SL, although one at a time. Each iteration, the highest p-value is removed.

Afterwards, I recompute the p-values again and repeat until no features have p-values above SL.

Also, below code is needed because statsmodel doesn't include the column of ones by default.

X = movies_numerical.loc[:, movies_numerical.columns != 'revenue']
Y = movies_numerical['revenue']
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size = 20)
model = LinearRegression(fit_intercept = True)
model.fit(X_train, Y_train)#, sample_weight = self.sample_weight)
intercept = model.intercept_
print(intercept)
813787443.4240371
movies_with_intercept = movies_numerical.copy()
#movies_with_ones = statsmodels.tools.tools.add_constant(movies_with_ones)
movies_with_intercept ['intercept'] = intercept
#movies_with_ones['const'] = 1
X = movies_with_intercept .loc[:, movies_with_intercept .columns != 'revenue']
Y = movies_with_intercept ['revenue']
insignificant_cols = ['facenumber_in_poster', 'num_critic_for_reviews', 'release_year']
X = X.drop(insignificant_cols, axis = 1)
regressor_OLS = sm.OLS(endog = Y, exog = X, hasconst = True).fit()
regressor_OLS.summary()
OLS Regression Results
Dep. Variable: revenue R-squared: 0.738
Model: OLS Adj. R-squared: 0.736
Method: Least Squares F-statistic: 509.3
Date: Fri, 22 May 2020 Prob (F-statistic): 0.00
Time: 23:53:35 Log-Likelihood: -54918.
No. Observations: 2912 AIC: 1.099e+05
Df Residuals: 2895 BIC: 1.100e+05
Df Model: 16
Covariance Type: nonrobust
coef std err t P>|t| [0.025 0.975]
belongs_to_collection 2.26e+07 1.89e+06 11.944 0.000 1.89e+07 2.63e+07
vote_average 7.328e+06 1.89e+06 3.881 0.000 3.63e+06 1.1e+07
vote_count 3.181e+04 1451.774 21.909 0.000 2.9e+04 3.47e+04
duration -1.187e+05 4.36e+04 -2.720 0.007 -2.04e+05 -3.31e+04
director_facebook_likes -1418.4105 255.132 -5.560 0.000 -1918.670 -918.151
actor_3_facebook_likes -5949.3429 978.993 -6.077 0.000 -7868.936 -4029.749
actor_1_facebook_likes -5024.5994 592.564 -8.479 0.000 -6186.489 -3862.710
num_voted_users -37.6561 13.431 -2.804 0.005 -63.991 -11.322
cast_total_facebook_likes 4927.6744 591.545 8.330 0.000 3767.783 6087.566
num_user_for_reviews 1.152e+04 2797.639 4.119 0.000 6038.338 1.7e+04
budget 0.5461 0.023 23.411 0.000 0.500 0.592
actor_2_facebook_likes -4896.6107 626.430 -7.817 0.000 -6124.905 -3668.317
imdb_score -3.554e+06 1.6e+06 -2.223 0.026 -6.69e+06 -4.19e+05
movie_facebook_likes -514.4919 44.593 -11.537 0.000 -601.929 -427.054
top_director 3.654e+07 4.79e+06 7.628 0.000 2.72e+07 4.59e+07
action_or_adventure -1.05e+07 1.77e+06 -5.936 0.000 -1.4e+07 -7.03e+06
intercept -0.0096 0.008 -1.210 0.226 -0.025 0.006
Omnibus: 1079.965 Durbin-Watson: 1.937
Prob(Omnibus): 0.000 Jarque-Bera (JB): 11922.721
Skew: 1.437 Prob(JB): 0.00
Kurtosis: 12.487 Cond. No. 5.60e+09


Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
[2] The condition number is large, 5.6e+09. This might indicate that there are
strong multicollinearity or other numerical problems.

Omnibus/Prob(Omnibus) – a test of the skewness and kurtosis of the residual (characteristic #2). We hope to see a value close to zero which would indicate normalcy. The Prob (Omnibus) performs a statistical test indicating the probability that the residuals are normally distributed. We hope to see something close to 1 here. In this case Omnibus is relatively low and the Prob (Omnibus) is relatively high so the data is somewhat normal, but not altogether ideal. A linear regression approach would probably be better than random guessing but likely not as good as a nonlinear approach.

Skew – a measure of data symmetry. We want to see something close to zero, indicating the residual distribution is normal. Note that this value also drives the Omnibus. This result has a small, and therefore good, skew.

Kurtosis – a measure of "peakiness", or curvature of the data. Higher peaks lead to greater Kurtosis. Greater Kurtosis can be interpreted as a tighter clustering of residuals around zero, implying a better model with few outliers.

Durbin-Watson – tests for homoscedasticity (characteristic #3). We hope to have a value between 1 and 2. In this case, the data is close, but within limits.

Jarque-Bera (JB)/Prob(JB) – like the Omnibus test in that it tests both skew and kurtosis. We hope to see in this test a confirmation of the Omnibus test. In this case we do.

Condition Number – This test measures the sensitivity of a function's output as compared to its input (characteristic #4). When we have multicollinearity, we can expect much higher fluctuations to small changes in the data, hence, we hope to see a relatively small number, something below 30. In this case we are well below 30, which we would expect given our model only has two variables and one is a constant.

movies_be = movies_numerical.copy().drop(insignificant_cols, axis = 1)
plt.figure(figsize = (18, 13))
sns.set_style("white")

corr_df = movies_be.copy()
corr = corr_df.corr().round(2)

mask = np.zeros_like(corr, dtype=np.bool)
mask[np.triu_indices_from(mask)] = True

#sns.heatmap(corr, annot = True, cmap = 'viridis', mask = mask)
heatmap = sns.heatmap(corr, annot = True, cmap = 'viridis', mask = mask)
bottom, top = heatmap.get_ylim()
heatmap.set_ylim(bottom + 0.6, top - 0.5)
fig = heatmap.get_figure()
#fig.savefig('heatmap.png', format = 'png', dpi = 1200)
plt.show()

png

Feature Selection Stuff

Select k best / Univariate Selection

from sklearn.feature_selection import SelectKBest, chi2

X = movies_be.copy().loc[:, movies_be.columns != 'revenue']
y = movies_be.copy()['revenue']

bestfeatures = SelectKBest(score_func=chi2, k=9)
fit = bestfeatures.fit(X,y)
dfscores = pd.DataFrame(fit.scores_)
dfcolumns = pd.DataFrame(X.columns)
#concat two dataframes for better visualization 
featureScores = pd.concat([dfcolumns,dfscores],axis=1)
featureScores.columns = ['Specs','Score']  #naming the dataframe columns
print(featureScores.nlargest(9,'Score')) 

k_best_cols = list(featureScores.nlargest(9,'Score').iloc[:, 0])
k_best_cols.append('revenue')
                        Specs         Score
10                     budget  1.385553e+11
7             num_voted_users  5.994871e+08
13       movie_facebook_likes  1.483301e+08
8   cast_total_facebook_likes  9.281176e+07
6      actor_1_facebook_likes  9.042603e+07
4     director_facebook_likes  3.489936e+07
11     actor_2_facebook_likes  3.058759e+07
5      actor_3_facebook_likes  1.452063e+07
2                  vote_count  6.464257e+06

Feature Importance

from sklearn.ensemble import ExtraTreesClassifier
import matplotlib.pyplot as plt

model = ExtraTreesClassifier()
model.fit(X,y)

print(model.feature_importances_) #use inbuilt class feature_importances of tree based classifiers
#plot graph of feature importances for better visualization
feat_importances = pd.Series(model.feature_importances_, index=X.columns)
feat_importances.nlargest(10).plot(kind='barh')
plt.show()

feature_important_cols = list(feat_importances.nlargest(10).keys())
feature_important_cols.append('revenue')
[0.01470752 0.07326097 0.07651357 0.07766461 0.07487516 0.07774061
 0.07112115 0.07791485 0.07454699 0.07836348 0.07573893 0.0770569
 0.075152   0.0598933  0.00202457 0.0134254 ]

png

Machine Learning

Note to self: Click here for working Predictor class dated 4/8/2019

Linear Regression.Note to self: Using features with a correlation coefficient in the range 0.1 to 0.9 yielded no changes in accuracies in comparison to using the whole dataset.

Note to self: Box-Cox and Log transforming the dependent variable gave a decrease/no change in accuracy.

#results_df.drop(results_df.index, inplace=True)

Linear Regression

Normalization is not needed but is done for easy interpretation of the error metrics. Standardization is also not required here.

from sklearn.preprocessing import PowerTransformer

dataset = movies_be.copy().drop(['action_or_adventure', 'top_director'], axis = 1)

cv_sets = 10
corrs = []
iterations = 100
normalize = True
results_list = ['Linear Regression']

if normalize:
    for column in dataset.columns:
      dataset[column] = ((dataset[column]) - dataset[column].min()) / (dataset[column].max() - dataset[column].min())

X = dataset.loc[:, dataset.columns != 'revenue']
y = dataset['revenue']

model = LinearRegression(fit_intercept = True)
model.fit(X, y)

mse_mean = cross_val_score(model, X, y, cv = cv_sets, scoring = 'neg_mean_squared_error').mean()
mae_mean = cross_val_score(model, X, y, cv = cv_sets, scoring = 'neg_mean_absolute_error').mean()
r2_mean = cross_val_score(model, X, y, cv = cv_sets, scoring = 'r2').mean()

# Calculate correlation between predicted and actual for a number of iterations and get the average

for i in tqdm_notebook(range(iterations), total = iterations, unit = 'iteration'):
  X_train, X_test, y_train, y_test = train_test_split(X, y)
  model = LinearRegression(fit_intercept = True)
  model.fit(X_train, y_train)
  y_pred = model.predict(X_test)
  corrs.append(np.corrcoef(y_test, y_pred)[0, 1])

results_list.append(sum(corrs)/iterations)
results_list.append(abs(mae_mean))
results_list.append(abs(mse_mean))
results_list.append(sqrt(abs(mse_mean)))
results_list.append(abs(r2_mean))

results_df = pd.DataFrame([results_list], columns = ['Algorithm', 'Correlation', 'MAE', 'MSE', 'RMSE', 'R2'])
results_df
HBox(children=(IntProgress(value=0), HTML(value='')))
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
</style>
Algorithm Correlation MAE MSE RMSE R2
0 Linear Regression 0.848596 0.032815 0.002603 0.051022 0.70225

Support Vector Regression

Note: When using standardization, the

from sklearn.svm import SVR
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import mean_absolute_error

corrs = []
mses = []
maes = []
r2s = []
rmses = []
results_list = ['Support Vector']

for i in range(100):
  dataset = movies_be.copy()
  cv_sets = 10
  normalize = True
  standardize = False


  if normalize:
      for column in dataset.columns:
        dataset[column] = ((dataset[column]) - dataset[column].min()) / (dataset[column].max() - dataset[column].min())

  X = dataset.loc[:, dataset.columns != 'revenue']
  y = dataset['revenue']

  if standardize:
    sc_X = StandardScaler()
    sc_y = StandardScaler()
    X = sc_X.fit_transform(X)
    y = sc_y.fit_transform(y.values.reshape(-1, 1))

  X_train, X_test, y_train, y_test = train_test_split(X, y) #, test_size = 0.2)

  model = SVR(kernel = 'linear')
  model.fit(X_train, y_train)

  if standardize:
    y_pred = sc_y.inverse_transform(model.predict(sc_X.transform(X_test)))
  else:
    y_pred = model.predict(X_test)
  
  
  mses.append(mean_squared_error(y_test, y_pred)) 
  maes.append(mean_absolute_error(y_test, y_pred))
  r2s.append(r2_score(y_test, y_pred))
  corrs.append(np.corrcoef(y_test, y_pred)[0, 1])
  rmses.append(sqrt(abs(mean_squared_error(y_test, y_pred))))


results_list.append(np.mean(corrs))
results_list.append(abs(np.mean(maes)))
results_list.append(abs(np.mean(mses)))
results_list.append(sqrt(abs(np.mean(rmses))))
results_list.append(abs(np.mean(r2s)))

results_df.loc[len(results_df)] = results_list

Decision Tree Regression

from sklearn.tree import DecisionTreeRegressor

dataset = movies_be.copy()
cv_sets = 10
corrs = []
results_list = ['Decision Tree']
iterations = 100
normalize = True

X = dataset.loc[:, dataset.columns != 'revenue']
y = dataset['revenue']

if normalize:
    for column in dataset.columns:
      dataset[column] = ((dataset[column]) - dataset[column].min()) / (dataset[column].max() - dataset[column].min())

model = DecisionTreeRegressor()
model.fit(X, y)

mse_mean = cross_val_score(model, X, y, cv = cv_sets, scoring = 'neg_mean_squared_error').mean()
mae_mean = cross_val_score(model, X, y, cv = cv_sets, scoring = 'neg_mean_absolute_error').mean()
r2_mean = cross_val_score(model, X, y, cv = cv_sets, scoring = 'r2').mean()

for i in tqdm_notebook(range(iterations), total = iterations, unit = 'iteration'):
  X_train, X_test, y_train, y_test = train_test_split(X, y)
  model = DecisionTreeRegressor()
  model.fit(X_train, y_train)
  y_pred = model.predict(X_test)
  corrs.append(np.corrcoef(y_test, y_pred)[0, 1])

results_list.append(np.mean(corrs))
results_list.append(abs(np.mean(maes)))
results_list.append(abs(np.mean(mses)))
results_list.append(sqrt(abs(np.mean(rmses))))
results_list.append(abs(np.mean(r2s)))

results_df.loc[len(results_df)] = results_list
HBox(children=(IntProgress(value=0), HTML(value='')))

Random Forest

from sklearn.ensemble import RandomForestRegressor

dataset = movies_be.copy()
cv_sets = 10
corrs = []
results_list = ['Random Forest']
iterations = 1
normalize = True
estimators = 100

X = dataset.loc[:, dataset.columns != 'revenue']
y = dataset['revenue']

if normalize:
    for column in dataset.columns:
      dataset[column] = ((dataset[column]) - dataset[column].min()) / (dataset[column].max() - dataset[column].min())

model = RandomForestRegressor(n_estimators = estimators)
model.fit(X, y)

mse_mean = cross_val_score(model, X, y, cv = cv_sets, scoring = 'neg_mean_squared_error').mean().round(4)
mae_mean = cross_val_score(model, X, y, cv = cv_sets, scoring = 'neg_mean_absolute_error').mean().round(4)
r2_mean = cross_val_score(model, X, y, cv = cv_sets, scoring = 'r2').mean().round(4)

for i in tqdm_notebook(range(iterations), total = iterations, unit = 'iteration'):
  X_train, X_test, y_train, y_test = train_test_split(X, y)
  model = RandomForestRegressor(n_estimators = estimators)
  model.fit(X_train, y_train)
  y_pred = model.predict(X_test)
  corrs.append(np.corrcoef(y_test, y_pred)[0, 1])

print('Corr: \t' + str((sum(corrs)/iterations).round(4)))
print('MAE: \t'+ str(abs(mae_mean).round(4)))
print('MSE: \t' + str(abs(mse_mean).round(4))) 
print('RMSE: \t' + str(sqrt(abs(mse_mean)).round(4)))
print('R2: \t' + str(abs(r2_mean).round(4)))

#print(sorted(zip(map(lambda x: round(x, 4), model.feature_importances_), dataset.columns), reverse=True))

results_list.append(sum(corrs)/iterations)
results_list.append(abs(mae_mean))
results_list.append(abs(mse_mean))
results_list.append(sqrt(abs(mse_mean)))
results_list.append(abs(r2_mean))
results_df.loc[len(results_df)] = results_list
HBox(children=(IntProgress(value=0, max=1), HTML(value='')))



Corr: 	0.8688
MAE: 	0.0317
MSE: 	0.0025
RMSE: 	0.05
R2: 	0.7128
feat_importances = pd.Series(model.feature_importances_, index = X.columns)
fig = feat_importances.nsmallest(len(X.columns)).plot(kind='barh').get_figure()
plt.tight_layout()
#fig.savefig('feat_importances.png', format='png', dpi=1200)
#files.download("feat_importances.png") 

png

Ridge Regression

from sklearn.model_selection import GridSearchCV
from sklearn.linear_model import Ridge

dataset = movies_be.copy()

cv_sets = 10
normalize = False
results_list = ['Ridge']

if normalize:
    for column in dataset.columns:
      dataset[column] = ((dataset[column]) - dataset[column].min()) / (dataset[column].max() - dataset[column].min())

X = dataset.loc[:, dataset.columns != 'revenue']
y = dataset['revenue']
parameters = {'alpha' : [1e-15, 1e-10, 1e-8, 18-4, 1e-3, 1e-2, 1, 5, 10, 20]}
scoring = {'MAE': 'neg_mean_absolute_error', 'MSE': 'neg_mean_squared_error', 'R2' : 'r2_score'}

model = Ridge()

regressor_mse = GridSearchCV(model, parameters, scoring = 'neg_mean_squared_error', cv = cv_sets)
regressor_mse.fit(X, y)

regressor_mae = GridSearchCV(model, parameters, scoring = 'neg_mean_absolute_error', cv = cv_sets)
regressor_mae.fit(X, y)

regressor_r2 = GridSearchCV(model, parameters, scoring = 'r2', cv = cv_sets)
regressor_r2.fit(X, y)

results_list.append(np.nan)
results_list.append(abs(np.mean(maes)))
results_list.append(abs(np.mean(mses)))
results_list.append(sqrt(abs(np.mean(rmses))))
results_list.append(abs(np.mean(r2s)))
from sklearn.model_selection import GridSearchCV
from sklearn.linear_model import Ridge

dataset = movies_be.copy()
iterations = 100
corrs = []

cv_sets = 10
normalize = True

if normalize:
    for column in dataset.columns:
      dataset[column] = ((dataset[column]) - dataset[column].min()) / (dataset[column].max() - dataset[column].min())

X = dataset.loc[:, dataset.columns != 'revenue']
y = dataset['revenue']
parameters = {'alpha' : [1e-15, 1e-10, 1e-8, 18-4, 1e-3, 1e-2, 1, 5, 10, 20]}
scoring_metrics = {'MAE': 'neg_mean_absolute_error', 'MSE': 'neg_mean_squared_error', 'R2' : 'r2'}

for i in tqdm_notebook(range(iterations), total = iterations, unit = 'iteration'):
  X_train, X_test, y_train, y_test = train_test_split(X, y)
  model = Ridge()
  regressor = GridSearchCV(model, parameters, cv = cv_sets)
  regressor.fit(X_train, y_train)
  y_pred = regressor.predict(X_test)
  corrs.append(np.corrcoef(y_test, y_pred)[0, 1])

results_list[1] = sum(corrs)/iterations
results_df.loc[len(results_df)] = results_list
HBox(children=(IntProgress(value=0), HTML(value='')))

Lasso Regression

from sklearn.model_selection import GridSearchCV
from sklearn.linear_model import Lasso

dataset = movies_be.copy()

cv_sets = 10
normalize = True
results_list = ['Lasso']

if normalize:
    for column in dataset.columns:
      dataset[column] = ((dataset[column]) - dataset[column].min()) / (dataset[column].max() - dataset[column].min())

X = dataset.loc[:, dataset.columns != 'revenue']
y = dataset['revenue']
parameters = {'alpha' : [1e-15, 1e-10, 1e-8, 18-4, 1e-3, 1e-2, 1, 5, 10, 20]}

#model = Lasso(tol=1)
model = Lasso()

regressor_mse = GridSearchCV(model, parameters, scoring = 'neg_mean_squared_error', cv = cv_sets)
regressor_mse.fit(X, y)

regressor_mae = GridSearchCV(model, parameters, scoring = 'neg_mean_absolute_error', cv = cv_sets)
regressor_mae.fit(X, y)

regressor_r2 = GridSearchCV(model, parameters, scoring = 'r2', cv = cv_sets)
regressor_r2.fit(X, y)

results_list.append(np.nan)
results_list.append(abs(np.mean(maes)))
results_list.append(abs(np.mean(mses)))
results_list.append(sqrt(abs(np.mean(rmses))))
results_list.append(abs(np.mean(r2s)))

To calculate correlation. Don't run again please. The results are almost always the same

from sklearn.model_selection import GridSearchCV
from sklearn.linear_model import Ridge

dataset = movies_be.copy()
iterations = 100
corrs = []

cv_sets = 10
normalize = True

if normalize:
    for column in dataset.columns:
      dataset[column] = ((dataset[column]) - dataset[column].min()) / (dataset[column].max() - dataset[column].min())

X = dataset.loc[:, dataset.columns != 'revenue']
y = dataset['revenue']
parameters = {'alpha' : [1e-15, 1e-10, 1e-8, 18-4, 1e-3, 1e-2, 1, 5, 10, 20]}
scoring_metrics = {'MAE': 'neg_mean_absolute_error', 'MSE': 'neg_mean_squared_error', 'R2' : 'r2'}

for i in tqdm_notebook(range(iterations), total = iterations, unit = 'iteration'):
  X_train, X_test, y_train, y_test = train_test_split(X, y)
  model = Lasso()
  regressor = GridSearchCV(model, parameters, cv = cv_sets)
  regressor.fit(X_train, y_train)
  y_pred = regressor.predict(X_test)
  corrs.append(np.corrcoef(y_test, y_pred)[0, 1])

results_list[1] = sum(corrs)/iterations
results_df.loc[len(results_df)] = results_list
HBox(children=(IntProgress(value=0), HTML(value='')))
results_df
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
</style>
Algorithm Correlation MAE MSE RMSE R2
0 Linear Regression 0.848596 0.032815 0.002603 0.051022 0.702250
1 Support Vector 0.840365 0.043034 0.003219 0.238074 0.650731
2 Decision Tree 0.752134 0.043034 0.003219 0.238074 0.650731
3 Random Forest 0.868772 0.031700 0.002500 0.050000 0.712800
4 Ridge 0.854340 0.043034 0.003219 0.238074 0.650731
5 Lasso 0.851810 0.043034 0.003219 0.238074 0.650731
pos = list(range(len(results_df['Correlation']))) 
width = 0.25 
sns.set_style('whitegrid')
fig, ax = plt.subplots(figsize=(10,5))

rects1 = plt.bar(pos, results_df['Correlation'], width, color = '#ff0000', label = results_df['Algorithm'][0])
rects2 = plt.bar([p + width for p in pos], results_df['R2'], width, color = '#32a852', label = results_df['Algorithm'][1]) 

plt.bar(pos, results_df['Correlation'], width, color = '#ff0000', label = results_df['Algorithm'][0])
plt.bar([p + width for p in pos], results_df['R2'], width, color = '#32a852', label = results_df['Algorithm'][1]) 

#ax.set_ylabel('Score')
#ax.set_title('Correlation and R-squared comparison')
ax.set_xticks([p + 1.5 * width for p in pos])
ax.set_xticklabels(results_df['Algorithm'])

plt.xlim(min(pos)-width, max(pos)+width*4)
ax.spines['bottom'].set_color('black')
ax.spines['left'].set_color('black')
plt.ylim([0.6, 1])
#plt.xticks(rotation = 45)

def autolabel(rects):
    for rect in rects:
        height = rect.get_height().round(3)
        ax.annotate('{}'.format(height),
                    xy=(rect.get_x() + rect.get_width() / 2, height),
                    xytext=(0, 3),  # 3 points vertical offset
                    textcoords="offset points",
                    ha='center', va='bottom')
autolabel(rects1)
autolabel(rects2)
sns.despine(top = True, right = True)
plt.legend(['Correlation', 'R-squared'], loc='upper left')
plt.show()

#fig.savefig('corrandr2.png', format = 'png', dpi = 1200)
#files.download('corrandr2.png')

png

pos = list(range(len(results_df['MAE']))) 
width = 0.25 
sns.set_style('whitegrid')
fig, ax = plt.subplots(figsize=(10,5))

rects1 = plt.bar(pos, results_df['MAE'], width, color = '#ffa500', label = results_df['Algorithm'][0])
rects2 = plt.bar([p + width for p in pos], results_df['RMSE'], width, color = '#34a1eb', label = results_df['Algorithm'][1]) 

plt.bar(pos, results_df['MAE'], width, color = '#ffa500', label = results_df['Algorithm'][0])
plt.bar([p + width for p in pos], results_df['RMSE'], width, color = '#34a1eb', label = results_df['Algorithm'][1]) 
#ax.set_ylabel('Score')
#ax.set_title('Error metrics comparison')
ax.set_xticks([p + 1.5 * width for p in pos])
ax.set_xticklabels(results_df['Algorithm'])

plt.xlim(min(pos)-width, max(pos)+width*4)
plt.ylim([0, max(results_df['MAE'] + results_df['RMSE'])] )
#plt.xticks(rotation = 45)
ax.spines['bottom'].set_color('black')
ax.spines['left'].set_color('black')

def autolabel(rects):
    """Attach a text label above each bar in *rects*, displaying its height."""
    for rect in rects:
        height = rect.get_height().round(3)
        ax.annotate('{}'.format(height),
                    xy=(rect.get_x() + rect.get_width() / 2, height),
                    xytext=(0, 3),  # 3 points vertical offset
                    textcoords="offset points",
                    ha='center', va='bottom')
autolabel(rects1)
autolabel(rects2)
sns.despine(top = True, right = True)
plt.legend(['MAE', 'RMSE'], loc='upper left')
plt.show()

png

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.