GithubHelp home page GithubHelp logo

ippc-2023's Introduction

IPC-2023

  1. MDPS VS POMDPS
  • MDPS: fully observable, assume that the state of the system is fully observable i.e. the agent has complete knowledge of the current state of the system and can use this information to make decisions. e.g. Chess.
  • POMDPS: partially observable environment, the agent only has access to partial observations of the state, and must maintain a belief state to reason about the true state of the system. e.g. Super Mario game
  1. MDPS might not be valid in real world problems where the past history may be relevant to the future state - POMDPS and RNN, etc are used in that case.

Trained for 100k epochs, Optimizer = Rmsprop

FOR LEARNING RATE = 0.01, train_return=-0.000180 test_return=-0.000187

FOR LEARNING RATE = 0.001, train_return=-0.000029 test_return=-0.000036

FOR LEARNING RATE = 0.0001, train_return=0.000003 test_return=-0.000004

FOR LEARNING RATE = 0.0003, train_return=-0.000004 test_return=-0.000011

Trained for 1000 epochs, Optimizer = RMSprop

FOR LEARNING RATE = 0.01, train_return=-0.000052 test_return=-0.000059

FOR LEARNING RATE = 0.001, train_return=-0.000030 test_return=-0.000037

FOR LEARNING RATE = 0.0001, train_return=0.000003 test_return=-0.000004

FOR LEARNING RATE = 0.0003, train_return=-0.000004 test_return=-0.000011

Trained for 1000 epochs, Optimizer = adam

FOR LEARNING RATE = 0.01, train_return=-0.000039 test_return=-0.000045

FOR LEARNING RATE = 0.001, train_return=-0.000030 test_return=-0.000037

FOR LEARNING RATE = 0.0001, train_return=0.000002 test_return=-0.000005

FOR LEARNING RATE = 0.0003, train_return=0.000006 test_return=-0.000001

Trained for 1000 epochs, Optimizer = adagrad

FOR LEARNING RATE = 0.01, train_return=0.000000 test_return=-0.000006

FOR LEARNING RATE = 0.001, train_return=0.000006 test_return=-0.000001

FOR LEARNING RATE = 0.0001, train_return=-0.000359 test_return=-0.000366

FOR LEARNING RATE = 0.0003, train_return=-0.000195 test_return=-0.000201

------------------------------------------- SAY HELLO TO JaxDeepReactivePolicy(topology = [256, 128]) ----------------------------------------------

Trained for 1000 epochs, Optimizer = rmsprop, JaxDeepReactivePolicy

FOR LEARNING RATE = 0.01, train_return=-0.000024 test_return=-0.000031

FOR LEARNING RATE = 0.001, train_return=-0.002088 test_return=-0.001904

FOR LEARNING RATE = 0.0001, train_return=-0.001759 test_return=-0.001705

FOR LEARNING RATE = 0.0003, train_return=-0.003328 test_return=-0.003029

Note: planner.optimize() returns a generator that yields a dictionary callback at the end of each training epoch. The dictionary contains various performance metrics, such as train_return and test_return, as well as the current model parameters, which are stored under the key params. So, if you want to access the final model parameters after training, you can simply use callback['params'].

policy_weights is a dictionary with keys representing the names of the actions in the policy, and values representing the weight to be assigned to each of those actions.

In the context of reinforcement learning or decision-making problems, the weights in a policy are typically used to balance exploration and exploitation. A higher weight indicates that the corresponding action should be chosen more often, which can lead to more exploration of the state space. Conversely, a lower weight indicates that the corresponding action should be chosen less often, which can lead to more exploitation of the current knowledge about the state space.

In the example you provided, the actions are 'cut-out' and 'put-out', and they are assigned equal weights of 10.0 each. This means that the planner will attempt to balance exploration and exploitation by choosing these two actions roughly equally often.

It seems that the variable "subs" is of type "NoneType" and therefore has no attribute "items". The code is trying to iterate over the items of the "subs" dictionary, but since it is None, it is causing the error.

initialize the planner

note that actions should be constrained to [-1, 1] for Racecar

planner = JaxRDDLBackpropPlanner( model, plan=JaxDeepReactivePolicy(topology = [256, 128]), batch_size_train=32, rollout_horizon=5, optimizer=optax.rmsprop, optimizer_kwargs={'learning_rate': 0.001})

step= 0 train_return=-0.122401 test_return=-0.103662 step= 100 train_return=-0.012848 test_return=-0.012794 step= 200 train_return=-0.012316 test_return=-0.011414 step= 300 train_return=-0.001971 test_return=-0.001878 step= 400 train_return=-0.007678 test_return=-0.007355 step= 500 train_return=-0.003496 test_return=-0.003103 step= 600 train_return=-0.002336 test_return=-0.002142 step= 700 train_return=-0.004687 test_return=-0.004558 step= 800 train_return=-0.002448 test_return=-0.002241 step= 900 train_return=-0.003806 test_return=-0.003678 step=1000 train_return=-0.002963 test_return=-0.002827 step=1100 train_return=-0.001406 test_return=-0.001191 step=1200 train_return=-0.002099 test_return=-0.001991 step=1300 train_return=-0.001522 test_return=-0.001346 step=1400 train_return=-0.000721 test_return=-0.000610 step=1500 train_return=-0.000368 test_return=-0.000344 step=1600 train_return=-0.000146 test_return=-0.000153 step=1700 train_return=-0.000311 test_return=-0.000256 step=1800 train_return=-0.000751 test_return=-0.000614 step=1900 train_return=-0.000487 test_return=-0.000419 step=2000 train_return=-0.000468 test_return=-0.000363 step=2100 train_return=-0.000327 test_return=-0.000256 step=2200 train_return=-0.000145 test_return=-0.000117 step=2300 train_return=-0.000087 test_return=-0.000071 step=2400 train_return=-0.000575 test_return=-0.000448 step=2500 train_return=-0.000567 test_return=-0.000463 step=2600 train_return=-0.000288 test_return=-0.000229 step=2700 train_return=-0.000369 test_return=-0.000294 step=2800 train_return=-0.000352 test_return=-0.000288 step=2900 train_return=-0.000201 test_return=-0.000182 step=3000 train_return=-0.000206 test_return=-0.000180 step=3100 train_return=-0.000257 test_return=-0.000240 step=3200 train_return=-0.000496 test_return=-0.000434 step=3300 train_return=-0.000551 test_return=-0.000488 step=3400 train_return=-0.000531 test_return=-0.000463 step=3500 train_return=-0.000533 test_return=-0.000468 step=3600 train_return=-0.000526 test_return=-0.000469 step=3700 train_return=-0.000417 test_return=-0.000372 step=3800 train_return=-0.000333 test_return=-0.000310 step=3900 train_return=-0.000341 test_return=-0.000329 step=4000 train_return=-0.000216 test_return=-0.000222 step=4100 train_return=-0.000020 test_return=-0.000027 step=4200 train_return=-0.000030 test_return=-0.000037 step=4300 train_return=-0.000030 test_return=-0.000037 step=4400 train_return=-0.000030 test_return=-0.000036 step=4500 train_return=-0.000029 test_return=-0.000036 step=4600 train_return=-0.000029 test_return=-0.000036 step=4700 train_return=-0.000029 test_return=-0.000036 step=4800 train_return=-0.000028 test_return=-0.000035 step=4900 train_return=-0.000028 test_return=-0.000035 step=5000 train_return=-0.000028 test_return=-0.000035 step=5100 train_return=-0.000028 test_return=-0.000035 step=5200 train_return=-0.000028 test_return=-0.000034 step=5300 train_return=-0.000027 test_return=-0.000034 step=5400 train_return=-0.000027 test_return=-0.000034 step=5500 train_return=-0.000027 test_return=-0.000034 step=5600 train_return=-0.000027 test_return=-0.000034 step=5700 train_return=-0.000027 test_return=-0.000033 step=5800 train_return=-0.000026 test_return=-0.000033 step=5900 train_return=-0.000026 test_return=-0.000033 step=6000 train_return=-0.000026 test_return=-0.000033 step=6100 train_return=-0.000026 test_return=-0.000033 step=6200 train_return=-0.000026 test_return=-0.000033 step=6300 train_return=-0.000026 test_return=-0.000033 step=6400 train_return=-0.000026 test_return=-0.000032 step=6500 train_return=-0.000025 test_return=-0.000032 step=6600 train_return=-0.000025 test_return=-0.000032 step=6700 train_return=-0.000025 test_return=-0.000032 step=6800 train_return=-0.000025 test_return=-0.000032 step=6900 train_return=-0.000025 test_return=-0.000032 step=7000 train_return=-0.000025 test_return=-0.000032 step=7100 train_return=-0.000025 test_return=-0.000032 step=7200 train_return=-0.000025 test_return=-0.000032 step=7300 train_return=-0.000025 test_return=-0.000031 step=7400 train_return=-0.000025 test_return=-0.000031 step=7500 train_return=-0.000024 test_return=-0.000031 step=7600 train_return=-0.000024 test_return=-0.000031 step=7700 train_return=-0.000024 test_return=-0.000031 step=7800 train_return=-0.000024 test_return=-0.000031 step=7900 train_return=-0.000024 test_return=-0.000031 step=8000 train_return=-0.000024 test_return=-0.000031 step=8100 train_return=-0.000024 test_return=-0.000031 step=8200 train_return=-0.000024 test_return=-0.000031 step=8300 train_return=-0.000024 test_return=-0.000031 step=8400 train_return=-0.000024 test_return=-0.000031 step=8500 train_return=-0.000024 test_return=-0.000031 step=8600 train_return=-0.000024 test_return=-0.000031 step=8700 train_return=-0.000024 test_return=-0.000031 step=8800 train_return=-0.000024 test_return=-0.000030 step=8900 train_return=-0.000024 test_return=-0.000030 step=9000 train_return=-0.000024 test_return=-0.000030 step=9100 train_return=-0.000023 test_return=-0.000030 step=9200 train_return=-0.000023 test_return=-0.000030 step=9300 train_return=-0.000023 test_return=-0.000030 step=9400 train_return=-0.000023 test_return=-0.000030 step=9500 train_return=-0.000023 test_return=-0.000030 step=9600 train_return=-0.000023 test_return=-0.000030 step=9700 train_return=-0.000023 test_return=-0.000030 step=9800 train_return=-0.000023 test_return=-0.000030 step=9900 train_return=-0.000023 test_return=-0.000030 step=9999 train_return=-0.000034 test_return=-0.000041

The rollout_horizon is a hyperparameter that controls the length of the plan generated by the planner. It determines how many steps into the future the planner will try to generate a plan for. A longer rollout_horizon can allow the planner to generate more detailed and potentially more effective plans, but can also increase the computational cost and the risk of the plan becoming inaccurate due to unforeseen events.

A good approach to selecting the rollout_horizon hyperparameter is to start with a small value and gradually increase it while monitoring the performance of the planner. This will allow you to find a balance between accuracy and computational cost that works best for your specific task. It's also worth noting that the optimal rollout_horizon may vary depending on the complexity of the task and the performance of the model being used by the planner.

rollout_horizon is a parameter used in reinforcement learning to specify how far ahead in time the agent should look when deciding on its current action.

The larger the rollout_horizon, the more future time steps the agent considers, and the more informed its current decision is likely to be.

However, larger rollout_horizon values also mean more computation time and potentially more memory usage.

The optimal rollout_horizon for a given problem depends on factors such as the complexity of the problem, the size of the state space, and the available computing resources.

It is common to experiment with different rollout_horizon values and select the one that gives the best performance on a validation set.

in general, a value of 1 can be used as the minimum value for rollout_horizon. In this case, the planner would only consider one step ahead when generating the plan or policy, which may be sufficient for simple environments or short-term decision-making problems. However, for more complex environments or longer-term decision-making problems, a larger rollout_horizon may be necessary to generate effective plans or policies.

-------ROLLOUT_HORIZON----------------------

initialize the planner

note that actions should be constrained to [-1, 1] for Racecar

planner = JaxRDDLBackpropPlanner( model, plan=JaxStraightLinePlan(), batch_size_train=32, rollout_horizon=8, optimizer=optax.rmsprop, optimizer_kwargs={'learning_rate': 0.01})

rollout_horizon = 1 , LR = 0.01, train_return=-0.000001 test_return=-0.000002 rollout_horizon = 2 , LR = 0.01, train_return=-0.000029 test_return=-0.000032 rollout_horizon = 4 , LR = 0.01, train_return=-0.000100 test_return=-0.000106 rollout_horizon = 5 , LR = 0.01, train_return=-0.000052 test_return=-0.000059 rollout_horizon = 8 , LR = 0.01, train_return=-0.000096 test_return=-0.000107 rollout_horizon = 10 , LR = 0.01,train_return=-0.000198 test_return=-0.000212 rollout_horizon = 12 , LR = 0.01, train_return=-0.000198 test_return=-0.000212 rollout_horizon = 14 , LR = 0.01, train_return=-0.000245 test_return=-0.000264

ippc-2023's People

Contributors

drishtishrrrma avatar

Watchers

 avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.