GithubHelp home page GithubHelp logo

numinv's Introduction

NOTE: This repo is for the NumInv tool, which uses the KLEE symbolic execution tool to check and generate counterexample inputs for invariants in C programs. A new version of the work (but does not use KLEE) is available at https://github.com/unsat/dig/. This new version supports both C and Java programs.

DIG2 (or NumInv) is a tool for generating numerical invariants using the KLEE symbolic execution tool.

Setup

DIG2 is written in Python using the SAGE mathematics system. Candidate invariants are checked using KLEE. Other verification tasks are done using the Z3 SMT solver. The tool has been tested using the following setup:

  • Debian Linux 8 (64 bit)
  • SageMath 7.5.1
  • Microsoft Z3 SMT solver 4.5.x
  • KLEE 1.3.0.0

Obtain DIG2

git clone https://github.com/unsat/numinv.git 

Installing SAGE and Z3###

  • Setup SAGE: download a precompiled SageMath binary
  • Setup Z3: download and build Z3 by following the instructions in the README file

Installing KLEE

  • Build KLEE using these instructions
  • Important: build KLEE with Z3 support !
#!shell

#command to build klee
cmake -DENABLE_SOLVER_Z3=ON -DENABLE_SOLVER_STP=OFF -DENABLE_POSIX_RUNTIME=ON -DENABLE_KLEE_UCLIBC=ON  -DENABLE_UNIT_TESTS=OFF -DENABLE_SYSTEM_TESTS=OFF -DKLEE_UCLIBC_PATH=/home/tnguyen/Src/Devel/KLEE/klee-uclibc /home/tnguyen/Src/Devel/KLEE/klee

Setup Paths

  • Put the following in your ~/.bash_profile. Adjust the directory paths to the ones you used.
#!shell
# ~/.bash_profile
export Z3=PATH/TO/z3   #Z3 dir
export SAGE=PATH/TO/sage  #where your SAGE dir is
export SAGE_PATH=$Z3/src/api/python
export KLEE=$DEVEL/KLEE/
export PATH=$KLEE/klee_build_dir/bin:$SAGE:$PATH
  • Make sure SAGE works, e.g., use sage to run the SAGE interpreter or sage --help
  • Make sure Z3 is installed correctly so that you can do sage -c "import z3" without error.
  • Make sure KLEE works, e.g., `klee --help | grep z3' should say something that Z3 is the default solver

Other miscs installations

  • astyle: do a apt-get install astyle

Usage

Here are some usage examples of DIG2. The following assumes we are currently in the dig2 directory.

Generating invariants

#!shell
$ sage -python -O dig2.py programs/nla/cohendiv.c 
15:47:38:alg:Info:analyze programs/nla/cohendiv.c
15:47:38:alg:Info:set seed to: 1495658857.7 (test 12)
15:47:38:miscs:Info:autodeg 3
15:47:38:alg:Info:check reachability
15:47:38:alg:Info:gen eqts at 2 locs: l37 (int x, int y, int r, int q, int a, int b); l25 (int x, int y, int q, int a, int b, int r)
15:48:4:alg:Info:gen eqts: (25.3289949894s)
15:48:4:alg:Info:4 invs:
l37: a*y - b == 0, q*y + r - x == 0
l25: a*y - b == 0, q*y + r - x == 0
15:48:4:alg:Info:gen ieqs at 2 locs: l37 (int x, int y, int r, int q, int a, int b); l25 (int x, int y, int q, int a, int b, int r)
15:48:4:alg:Info:2 locs: check upperbounds for 144 terms (range 10)
15:48:25:alg:Info:gen ieqs: (21.7538409233s)
15:48:25:alg:Info:63 invs:
l37: -r - y <= -1, b - x <= 0, -b - r <= -1, -q - r <= -1, -r - x <= -1, -a - x <= -1, q - x <= 0, -r <= 0, a - x <= 0, -q - x <= -1, -a - y <= -2, a - b <= 0, r - x <= 0, r - y <= -1, -b <= 0, a - q <= 0, -q <= 0, -a - q <= 0, -y <= -1, -x <= -1, -a - b <= 0, -a - r <= -1, -b - q <= 0, -b - y <= -2, -a <= 0, -x - y <= -2, -b - x <= -1, -q - y <= -2, a*y - b == 0, q*y + r - x == 0
l25: a - x <= 0, -b + y <= 0, -r <= -1, -r - x <= -2, q - x <= -1, -a - y <= -2, -b - x <= -2, -q - y <= -1, -b - q <= -1, b - r <= 0, -x - y <= -2, a - r <= 0, a - b <= 0, -a <= -1, -b <= -1, -a - b <= -2, -b - y <= -2, -r + y <= 0, -q <= 0, -x <= -1, -q - x <= -1, r - x <= 0, -x + y <= 0, -a - x <= -2, -b - r <= -2, -q - r <= -1, -r - y <= -2, b - x <= 0, -a - q <= -1, -a - r <= -2, -y <= -1, a*y - b == 0, q*y + r - x == 0
15:48:25:alg:Info:test 63 invs on all 1622 traces
15:48:29:alg:Info:find uniq invs
15:48:29:alg:Info:63 invs:
l37: -r - y <= -1, b - x <= 0, -b - r <= -1, -q - r <= -1, -r - x <= -1, -a - x <= -1, q - x <= 0, -r <= 0, a - x <= 0, -q - x <= -1, -a - y <= -2, a - b <= 0, r - x <= 0, r - y <= -1, -b <= 0, a - q <= 0, -q <= 0, -a - q <= 0, -y <= -1, -x <= -1, -a - b <= 0, -a - r <= -1, -b - q <= 0, -b - y <= -2, -a <= 0, -x - y <= -2, -b - x <= -1, -q - y <= -2, a*y - b == 0, q*y + r - x == 0
l25: a - x <= 0, -b + y <= 0, -r <= -1, -r - x <= -2, q - x <= -1, -a - y <= -2, -b - x <= -2, -q - y <= -1, -b - q <= -1, b - r <= 0, -x - y <= -2, a - r <= 0, a - b <= 0, -a <= -1, -b <= -1, -a - b <= -2, -b - y <= -2, -r + y <= 0, -q <= 0, -x <= -1, -q - x <= -1, r - x <= 0, -x + y <= 0, -a - x <= -2, -b - r <= -2, -q - r <= -1, -r - y <= -2, b - x <= 0, -a - q <= -1, -a - r <= -2, -y <= -1, a*y - b == 0, q*y + r - x == 0
15:48:30:alg:Info:*** programs/nla/cohendiv.c, 2 locs, invs 14, inps 234, time 52.1688649654 s, rand 16: 
l37: a - q <= 0, q*y + r - x == 0, -b <= 0, r - y <= -1, -r <= 0, -a - r <= -1, a*y - b == 0
l25: -b + y <= 0, q*y + r - x == 0, a - b <= 0, b - r <= 0, -a - y <= -2, r - x <= 0, a*y - b == 0


Here DIG3 discovers the equality invariants a*y = b, q*y + r = x and other inequalities at the locations marked with //%%%traces from the program programs/nla/cohenDiv.c below:

#!C

int cohendiv(int x, int y){
  //Cohen's integer division that returns x % y
  assert(x>0 && y>0);
  int q=0; 
  int r=x;
  while(1){
    if (!(r>=y)) break;
    int a=1; 
    int b=y;
    while(1){
      //traces: int q, int r, int a, int b, int x, int y
      if (!(r >= 2*b)) break;
      a = 2*a;
      b = 2*b;
    }
    r=r-b;
    q=q+a;
  }
  //%%%traces: int q, int r, int a, int b, int x, int y
  return q;
}

Other programs

The directory ../programs/nla/ contains many programs having such nonlinear invariants.

Publications

Additional information on DIG can be found from these papers:

  • ThanhVu Nguyen, Timos Antopoulos, Andrew Ruef, and Michael Hicks. A Counterexample-guided Approach to Finding Numerical Invariants. In Foundations of Software Engineering (FSE), page (to appear). ACM, 2017

Others

  • Benchmarks are in subdirectory "programs" (nla, complexity, and hola)
  • Results are in "fse17_results". These are logs, which we use collect_results.py to extract stats such as mean #'s of invs, time, etc

numinv's People

Contributors

nguyenthanhvuh avatar

Stargazers

 avatar  avatar

Watchers

 avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.