GithubHelp home page GithubHelp logo

espin086 / jjutils Goto Github PK

View Code? Open in Web Editor NEW
2.0 2.0 0.0 4.74 MB

Utilities is a collection of Python and R scripts that can be used across multiple projects. It includes useful tools and functions for data processing, visualization, and analysis. Simplify your workflow and boost productivity with Utilities.

Makefile 0.01% Python 99.75% Jupyter Notebook 0.04% PowerShell 0.15% Shell 0.05%

jjutils's Introduction

jjutils's People

Contributors

espin086 avatar

Stargazers

 avatar  avatar

Watchers

 avatar  avatar

jjutils's Issues

Create AutoSKLearn Class

Here is the starter code:

import autosklearn.classification
import autosklearn.regression
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, mean_squared_error
from sklearn.cluster import KMeans, DBSCAN, AgglomerativeClustering
import joblib

class AutoMLModel:
def init(self, task='classification', time_left_for_this_task=3600, per_run_time_limit=300):
"""
Initialize the AutoMLModel.

    :param task: Type of task, either 'classification', 'regression', or 'clustering'.
    :param time_left_for_this_task: Time limit for the AutoML task in seconds.
    :param per_run_time_limit: Time limit for each model run in seconds.
    """
    self.task = task
    self.time_left_for_this_task = time_left_for_this_task
    self.per_run_time_limit = per_run_time_limit
    self.automl = None
    self.model = None

def fit(self, X, y=None, cluster_algorithm='kmeans', **kwargs):
    """
    Fit the AutoML model to the data.
    
    :param X: Features as a DataFrame or array.
    :param y: Target variable as a Series or array (for classification and regression tasks).
    :param cluster_algorithm: Clustering algorithm to use ('kmeans', 'dbscan', or 'agglomerative').
    :param kwargs: Additional keyword arguments for the clustering algorithm.
    """
    if self.task == 'classification':
        self.automl = autosklearn.classification.AutoSklearnClassifier(
            time_left_for_this_task=self.time_left_for_this_task,
            per_run_time_limit=self.per_run_time_limit
        )
        self.automl.fit(X, y)
        self.model = self.automl.show_models()
    elif self.task == 'regression':
        self.automl = autosklearn.regression.AutoSklearnRegressor(
            time_left_for_this_task=self.time_left_for_this_task,
            per_run_time_limit=self.per_run_time_limit
        )
        self.automl.fit(X, y)
        self.model = self.automl.show_models()
    elif self.task == 'clustering':
        if cluster_algorithm == 'kmeans':
            self.model = KMeans(**kwargs)
        elif cluster_algorithm == 'dbscan':
            self.model = DBSCAN(**kwargs)
        elif cluster_algorithm == 'agglomerative':
            self.model = AgglomerativeClustering(**kwargs)
        else:
            raise ValueError("Clustering algorithm must be 'kmeans', 'dbscan', or 'agglomerative'.")
        self.model.fit(X)
    else:
        raise ValueError("Task must be 'classification', 'regression', or 'clustering'.")

def predict(self, X):
    """
    Predict using the trained AutoML model.
    
    :param X: Features as a DataFrame or array.
    :return: Predictions as an array.
    """
    if self.automl:
        return self.automl.predict(X)
    elif self.model:
        return self.model.predict(X)
    else:
        print("Model has not been fitted yet.")
        return None

def evaluate(self, X, y):
    """
    Evaluate the model on the given data.
    
    :param X: Features as a DataFrame or array.
    :param y: True target variable values as a Series or array.
    :return: Evaluation metric.
    """
    predictions = self.predict(X)
    if self.task == 'classification':
        return accuracy_score(y, predictions)
    elif self.task == 'regression':
        return mean_squared_error(y, predictions, squared=False)
    elif self.task == 'clustering':
        # For clustering, evaluation metrics are different (e.g., silhouette score, etc.)
        # Implement specific metrics as needed
        return None

def save_model(self, file_path):
    """
    Save the trained model to a file.
    
    :param file_path: Path to the file where the model will be saved.
    """
    if self.automl or self.model:
        joblib.dump(self.automl if self.automl else self.model, file_path)
    else:
        print("Model has not been fitted yet.")

def load_model(self, file_path):
    """
    Load a trained model from a file.
    
    :param file_path: Path to the file where the model is saved.
    """
    self.model = joblib.load(file_path)

def get_model(self):
    """
    Get the underlying AutoML or clustering model.
    
    :return: AutoML or clustering model object.
    """
    return self.automl if self.task in ['classification', 'regression'] else self.model

def show_models(self):
    """
    Show the models found during the AutoML process.
    
    :return: List of models.
    """
    if self.task in ['classification', 'regression'] and self.automl:
        return self.model
    else:
        print("Model has not been fitted yet.")
        return None

Add Regression Utility

Here is the regression utility starter code:

import pandas as pd
import statsmodels.api as sm
import statsmodels.formula.api as smf
from statsmodels.stats.outliers_influence import variance_inflation_factor, OLSInfluence
from statsmodels.stats.diagnostic import het_breuschpagan, acorr_breusch_godfrey
import matplotlib.pyplot as plt

class RegressionAnalysis:
def init(self, dataframe, formula):
"""
Initialize the RegressionAnalysis with a Pandas DataFrame and a formula.

    :param dataframe: Pandas DataFrame containing the data.
    :param formula: Formula for the regression model (e.g., 'y ~ x1 + x2').
    """
    self.dataframe = dataframe
    self.formula = formula
    self.model = None
    self.results = None

def fit_model(self):
    """
    Fit the regression model using the provided formula and data.
    
    :return: Fitted regression model results.
    """
    try:
        self.model = smf.ols(formula=self.formula, data=self.dataframe)
        self.results = self.model.fit()
        return self.results
    except Exception as e:
        print(f"Error fitting model: {e}")

def summary(self):
    """
    Print the summary of the fitted regression model.
    """
    if self.results:
        print(self.results.summary())
    else:
        print("Model has not been fitted yet.")

def plot_diagnostics(self):
    """
    Plot regression diagnostics.
    """
    if self.results:
        sm.graphics.plot_regress_exog(self.results, self.formula.split('~')[1].strip())
        plt.show()
    else:
        print("Model has not been fitted yet.")

def calculate_vif(self):
    """
    Calculate Variance Inflation Factor (VIF) for the independent variables.
    
    :return: DataFrame containing VIF values.
    """
    if self.model:
        X = self.model.exog
        vif_data = pd.DataFrame()
        vif_data["variable"] = self.model.exog_names
        vif_data["VIF"] = [variance_inflation_factor(X, i) for i in range(X.shape[1])]
        return vif_data
    else:
        print("Model has not been fitted yet.")
        return None

def residuals_histogram(self):
    """
    Plot a histogram of the residuals.
    """
    if self.results:
        residuals = self.results.resid
        plt.hist(residuals, bins=30, edgecolor='k')
        plt.title('Residuals Histogram')
        plt.xlabel('Residuals')
        plt.ylabel('Frequency')
        plt.show()
    else:
        print("Model has not been fitted yet.")

def check_heteroscedasticity(self):
    """
    Perform Breusch-Pagan test for heteroscedasticity.
    
    :return: Test statistic and p-value.
    """
    if self.results:
        _, pval, __, f_pval = het_breuschpagan(self.results.resid, self.results.model.exog)
        return {"Lagrange multiplier p-value": pval, "F-statistic p-value": f_pval}
    else:
        print("Model has not been fitted yet.")
        return None

def check_autocorrelation(self):
    """
    Perform Durbin-Watson test for autocorrelation.
    
    :return: Durbin-Watson statistic.
    """
    if self.results:
        dw = sm.stats.durbin_watson(self.results.resid)
        return dw
    else:
        print("Model has not been fitted yet.")
        return None

def qq_plot(self):
    """
    Generate a QQ plot of the residuals to check for normality.
    """
    if self.results:
        sm.qqplot(self.results.resid, line='s')
        plt.title('QQ Plot')
        plt.show()
    else:
        print("Model has not been fitted yet.")

def leverage_plot(self):
    """
    Generate a leverage plot to detect influential points.
    """
    if self.results:
        sm.graphics.influence_plot(self.results, criterion="cooks")
        plt.show()
    else:
        print("Model has not been fitted yet.")

def set_dataframe(self, dataframe):
    """
    Set a new DataFrame for regression analysis.
    
    :param dataframe: Pandas DataFrame to use for regression analysis.
    """
    self.dataframe = dataframe

def set_formula(self, formula):
    """
    Set a new formula for regression analysis.
    
    :param formula: Formula for the regression model (e.g., 'y ~ x1 + x2').
    """
    self.formula = formula

def run_all_diagnostics(self):
    """
    Run all regression diagnostics and print the results.
    """
    if not self.results:
        print("Model has not been fitted yet.")
        return

    # Print the summary of the model
    self.summary()

    # Calculate VIF
    vif_data = self.calculate_vif()
    print("\nVariance Inflation Factor (VIF):")
    print(vif_data)

    # Plot residuals histogram
    print("\nResiduals Histogram:")
    self.residuals_histogram()

    # Check for heteroscedasticity
    heteroscedasticity_test = self.check_heteroscedasticity()
    print("\nHeteroscedasticity Test (Breusch-Pagan):")
    print(heteroscedasticity_test)

    # Check for autocorrelation
    autocorrelation_test = self.check_autocorrelation()
    print("\nAutocorrelation Test (Durbin-Watson):")
    print(f"Durbin-Watson statistic: {autocorrelation_test}")

    # Generate QQ plot
    print("\nQQ Plot:")
    self.qq_plot()

    # Generate leverage plot
    print("\nLeverage Plot:")
    self.leverage_plot()

def predict(self, new_data):
    """
    Predict the response for a new dataset.
    
    :param new_data: Pandas DataFrame containing the new data.
    :return: Predictions as a Pandas Series.
    """
    if self.results:
        try:
            predictions = self.results.predict(new_data)
            return predictions
        except Exception as e:
            print(f"Error making predictions: {e}")
    else:
        print("Model has not been fitted yet.")
        return None

Create a Streamlit Class for Creating Simple One Page Apps

Here is some starter code

import streamlit as st
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

class StreamlitApp:
def init(self, title="Streamlit App", description="This is a Streamlit app."):
"""
Initialize the StreamlitApp class.

    :param title: Title of the Streamlit app.
    :param description: Description of the Streamlit app.
    """
    self.title = title
    self.description = description

def render_title(self):
    """
    Render the title of the app.
    """
    st.title(self.title)

def render_description(self):
    """
    Render the description of the app.
    """
    st.write(self.description)

def render_file_uploader(self, label="Upload a file", file_types=["csv", "xlsx"]):
    """
    Render a file uploader and return the uploaded file.
    
    :param label: Label for the file uploader.
    :param file_types: List of allowed file types.
    :return: Uploaded file.
    """
    uploaded_file = st.file_uploader(label, type=file_types)
    return uploaded_file

def read_file(self, uploaded_file):
    """
    Read the uploaded file into a Pandas DataFrame.
    
    :param uploaded_file: Uploaded file.
    :return: DataFrame containing the file data.
    """
    if uploaded_file.name.endswith('.csv'):
        df = pd.read_csv(uploaded_file)
    elif uploaded_file.name.endswith('.xlsx'):
        df = pd.read_excel(uploaded_file)
    else:
        st.error("Unsupported file format!")
        return None
    return df

def render_dataframe(self, df):
    """
    Render a Pandas DataFrame in the app.
    
    :param df: DataFrame to render.
    """
    st.dataframe(df)

def render_sidebar(self, df):
    """
    Render the sidebar with user input options.
    
    :param df: DataFrame to be used for sidebar options.
    :return: User selected options from sidebar.
    """
    st.sidebar.title("Options")
    chart_type = st.sidebar.selectbox("Select Chart Type", ["Line Chart", "Bar Chart", "Scatter Plot"])
    x_axis = st.sidebar.text_input("X-axis Column")
    y_axis = st.sidebar.text_input("Y-axis Column")
    columns = st.sidebar.multiselect("Select Columns", options=df.columns.tolist())
    date_column = st.sidebar.selectbox("Select Date Column", options=["None"] + df.columns.tolist())
    date_range = st.sidebar.date_input("Select Date Range", [])
    search_term = st.sidebar.text_input("Search Term")
    return chart_type, x_axis, y_axis, columns, date_column, date_range, search_term

def filter_data(self, df, date_column, date_range, search_term):
    """
    Filter data based on date range and search term.
    
    :param df: DataFrame to filter.
    :param date_column: Column to use for date filtering.
    :param date_range: Date range for filtering.
    :param search_term: Search term for filtering.
    :return: Filtered DataFrame.
    """
    if date_column != "None" and date_range:
        start_date, end_date = date_range
        df = df[(df[date_column] >= pd.to_datetime(start_date)) & (df[date_column] <= pd.to_datetime(end_date))]

    if search_term:
        df = df[df.apply(lambda row: row.astype(str).str.contains(search_term, case=False).any(), axis=1)]
    
    return df

def render_plot(self, df, chart_type, x_axis, y_axis):
    """
    Render a plot from a DataFrame.
    
    :param df: DataFrame to plot.
    :param chart_type: Type of chart to plot.
    :param x_axis: Column name for the x-axis.
    :param y_axis: Column name for the y-axis.
    """
    if x_axis not in df.columns or y_axis not in df.columns:
        st.error("Invalid columns for plotting. Please check the column names.")
        return

    plt.figure(figsize=(10, 6))

    if chart_type == "Line Chart":
        sns.lineplot(data=df, x=x_axis, y=y_axis)
    elif chart_type == "Bar Chart":
        sns.barplot(data=df, x=x_axis, y=y_axis)
    elif chart_type == "Scatter Plot":
        sns.scatterplot(data=df, x=x_axis, y=y_axis)
    
    plt.title(f"{chart_type} of {y_axis} vs {x_axis}")
    st.pyplot(plt)

def render_download_button(self, df, label="Download data as CSV", file_name="data.csv"):
    """
    Render a download button for the DataFrame.
    
    :param df: DataFrame to download.
    :param label: Label for the download button.
    :param file_name: Default file name for the download.
    """
    csv = df.to_csv(index=False).encode('utf-8')
    st.download_button(label=label, data=csv, file_name=file_name, mime='text/csv')

def run(self):
    """
    Run the Streamlit app.
    """
    self.render_title()
    self.render_description()

    # Render file uploader and read the uploaded file
    uploaded_file = self.render_file_uploader()
    if uploaded_file is not None:
        df = self.read_file(uploaded_file)
        if df is not None:
            # Display the data frame
            self.render_dataframe(df)
            
            # Render sidebar and get user inputs
            chart_type, x_axis, y_axis, columns, date_column, date_range, search_term = self.render_sidebar(df)
            
            # Filter data based on user inputs
            df_filtered = self.filter_data(df, date_column, date_range, search_term)
            
            # Display the filtered data frame
            self.render_dataframe(df_filtered)
            
            # Render plot based on user inputs
            if x_axis and y_axis:
                self.render_plot(df_filtered, chart_type, x_axis, y_axis)
            
            # Render download button for the filtered data
            self.render_download_button(df_filtered)

To run the app, create an instance of the StreamlitApp class and call the run method

if name == "main":
app = StreamlitApp(title="Enhanced Streamlit App", description="This app allows you to upload a file and visualize it.")
app.run()

Create a Google Sheet Class for Working with Google Sheets

Starter code:

import gspread
from oauth2client.service_account import ServiceAccountCredentials
import pandas as pd

class GoogleSheets:
def init(self, credentials_file, sheet_name):
"""
Initialize the GoogleSheets class.

    :param credentials_file: Path to the Google API credentials JSON file.
    :param sheet_name: Name of the Google Sheet to interact with.
    """
    self.credentials_file = credentials_file
    self.sheet_name = sheet_name
    self.client = self.authenticate()
    self.sheet = self.client.open(sheet_name)

def authenticate(self):
    """
    Authenticate and create a Google Sheets client.
    
    :return: Google Sheets client.
    """
    scope = [
        'https://spreadsheets.google.com/feeds',
        'https://www.googleapis.com/auth/drive'
    ]
    creds = ServiceAccountCredentials.from_json_keyfile_name(self.credentials_file, scope)
    client = gspread.authorize(creds)
    return client

def get_worksheet(self, worksheet_name):
    """
    Get a worksheet by name.
    
    :param worksheet_name: Name of the worksheet.
    :return: Worksheet object.
    """
    return self.sheet.worksheet(worksheet_name)

def read_worksheet(self, worksheet_name):
    """
    Read data from a worksheet into a Pandas DataFrame.
    
    :param worksheet_name: Name of the worksheet.
    :return: DataFrame containing the worksheet data.
    """
    worksheet = self.get_worksheet(worksheet_name)
    data = worksheet.get_all_records()
    return pd.DataFrame(data)

def write_to_worksheet(self, worksheet_name, dataframe):
    """
    Write a Pandas DataFrame to a worksheet.
    
    :param worksheet_name: Name of the worksheet.
    :param dataframe: DataFrame containing the data to write.
    """
    worksheet = self.get_worksheet(worksheet_name)
    worksheet.clear()
    worksheet.update([dataframe.columns.values.tolist()] + dataframe.values.tolist())

def append_to_worksheet(self, worksheet_name, dataframe):
    """
    Append a Pandas DataFrame to the end of a worksheet.
    
    :param worksheet_name: Name of the worksheet.
    :param dataframe: DataFrame containing the data to append.
    """
    worksheet = self.get_worksheet(worksheet_name)
    worksheet.append_rows(dataframe.values.tolist())

def create_worksheet(self, worksheet_name, rows=1000, cols=26):
    """
    Create a new worksheet.
    
    :param worksheet_name: Name of the worksheet to create.
    :param rows: Number of rows in the new worksheet.
    :param cols: Number of columns in the new worksheet.
    """
    self.sheet.add_worksheet(title=worksheet_name, rows=rows, cols=cols)

def delete_worksheet(self, worksheet_name):
    """
    Delete a worksheet by name.
    
    :param worksheet_name: Name of the worksheet to delete.
    """
    worksheet = self.get_worksheet(worksheet_name)
    self.sheet.del_worksheet(worksheet)

def list_worksheets(self):
    """
    List all worksheets in the Google Sheet.
    
    :return: List of worksheet names.
    """
    worksheets = self.sheet.worksheets()
    return [worksheet.title for worksheet in worksheets]

Create README

The readme should start with how to pip install the package.

Then it should provide examples of how it simplifies data analysis for every method.

Create GPT Class for Text Generation

Here is starter code:

import openai

class GPTTextCompletion:
def init(self, api_key, model="text-davinci-003", max_tokens=100, temperature=0.7):
"""
Initialize the GPTTextCompletion class with API key, model, and hyperparameters.

    :param api_key: OpenAI API key for authentication.
    :param model: Model to use for text generation.
    :param max_tokens: Maximum number of tokens to generate.
    :param temperature: Sampling temperature to use.
    """
    self.api_key = api_key
    openai.api_key = self.api_key
    self.model = model
    self.max_tokens = max_tokens
    self.temperature = temperature
    self.prompt = ""
    self.last_completion = None

def generate_text(self, prompt=None, n=1):
    """
    Generate text completion based on the given prompt.
    
    :param prompt: Text prompt for the model (if None, use the initialized prompt).
    :param n: Number of completions to generate.
    :return: The best generated text completion.
    """
    if prompt is None:
        prompt = self.prompt

    try:
        response = openai.Completion.create(
            model=self.model,
            prompt=prompt,
            max_tokens=self.max_tokens,
            temperature=self.temperature,
            n=n
        )
        completions = [choice.text.strip() for choice in response.choices]
        self.last_completion = max(completions, key=len)  # Assuming the best completion is the longest one
        return self.last_completion
    except Exception as e:
        print(f"Error generating text: {e}")
        return None

def get_last_completion(self):
    """
    Get the last generated text completion.
    
    :return: Last generated text completion.
    """
    return self.last_completion

def engineer_prompt(self, context, task, details=None, format_specification=None):
    """
    Engineer a prompt based on provided context, task, and optional details and format specification.
    
    :param context: Background information or context for the prompt.
    :param task: The main task or question for the prompt.
    :param details: Additional details or requirements for the prompt.
    :param format_specification: Format specifications for the output.
    """
    self.prompt = f"Context: {context}\n"
    self.prompt += f"Task: {task}\n"
    
    if details:
        self.prompt += f"Details: {details}\n"
    
    if format_specification:
        self.prompt += f"Format: {format_specification}\n"
    
    self.prompt += "Response: "

Usage example

if name == "main":
api_key = "YOUR_OPENAI_API_KEY"

# Initialize the class with default parameters
gpt = GPTTextCompletion(
    api_key=api_key,
    model="text-davinci-003",
    max_tokens=150,
    temperature=0.7
)

# Use the prompt engineering method to create a prompt and set it as the class attribute
context = "You are an expert in machine learning."
task = "Explain the concept of overfitting."
details = "Include examples and methods to prevent it."
format_specification = "Provide the response in a structured format with bullet points."
gpt.engineer_prompt(context, task, details, format_specification)

# Generate text using the engineered prompt
best_completion = gpt.generate_text(n=3)

# Print the best completion
print("Best Completion:\n", best_completion)

Create BigQuery Query Class

Here is some starter code:

from google.cloud import bigquery
from google.oauth2 import service_account
import pandas as pd

class BigQueryClient:
def init(self, credentials_file, project_id):
"""
Initialize the BigQueryClient class.

    :param credentials_file: Path to the Google Cloud service account key JSON file.
    :param project_id: Google Cloud project ID.
    """
    self.credentials = service_account.Credentials.from_service_account_file(credentials_file)
    self.client = bigquery.Client(credentials=self.credentials, project=project_id)

def query(self, query):
    """
    Execute a SQL query and return the results as a DataFrame.
    
    :param query: SQL query string.
    :return: DataFrame containing the query results.
    """
    query_job = self.client.query(query)
    result = query_job.result()
    return result.to_dataframe()

def insert_rows(self, table_id, rows_to_insert):
    """
    Insert rows into a BigQuery table.
    
    :param table_id: Table ID in the format `project.dataset.table`.
    :param rows_to_insert: List of rows to insert, where each row is a dictionary.
    :return: List of errors encountered during the insert operation.
    """
    errors = self.client.insert_rows_json(table_id, rows_to_insert)
    if errors:
        print(f"Encountered errors while inserting rows: {errors}")
    return errors

def load_dataframe(self, dataframe, table_id, if_exists='replace'):
    """
    Load a DataFrame into a BigQuery table.
    
    :param dataframe: Pandas DataFrame to load.
    :param table_id: Table ID in the format `project.dataset.table`.
    :param if_exists: Behavior when the table exists. Options: 'replace', 'append'.
    """
    job_config = bigquery.LoadJobConfig()
    if if_exists == 'replace':
        job_config.write_disposition = bigquery.WriteDisposition.WRITE_TRUNCATE
    elif if_exists == 'append':
        job_config.write_disposition = bigquery.WriteDisposition.WRITE_APPEND
    else:
        raise ValueError("Invalid value for if_exists: 'replace' or 'append' expected.")

    job = self.client.load_table_from_dataframe(dataframe, table_id, job_config=job_config)
    job.result()  # Wait for the job to complete

    print(f"Loaded {job.output_rows} rows into {table_id}.")

def create_table(self, table_id, schema):
    """
    Create a new BigQuery table with the specified schema.
    
    :param table_id: Table ID in the format `project.dataset.table`.
    :param schema: List of bigquery.SchemaField objects defining the table schema.
    """
    table = bigquery.Table(table_id, schema=schema)
    table = self.client.create_table(table)
    print(f"Created table {table_id}")

def delete_table(self, table_id):
    """
    Delete a BigQuery table.
    
    :param table_id: Table ID in the format `project.dataset.table`.
    """
    self.client.delete_table(table_id, not_found_ok=True)
    print(f"Deleted table {table_id}")

def list_datasets(self):
    """
    List all datasets in the project.
    
    :return: List of dataset IDs.
    """
    datasets = list(self.client.list_datasets())
    return [dataset.dataset_id for dataset in datasets]

def list_tables(self, dataset_id):
    """
    List all tables in a dataset.
    
    :param dataset_id: Dataset ID.
    :return: List of table IDs.
    """
    tables = list(self.client.list_tables(dataset_id))
    return [table.table_id for table in tables]

Create a Python Class for Panel Data Regression Modeling

We need to create a Python class that performs panel data regression modeling. The class should be able to handle the following types of regression models:

  1. Fixed-effects model
  2. Difference-in-difference model
  3. Random effects model
  4. Ordinary Least Squares (OLS) model

For each of these models, the class should include diagnostic tools to evaluate the performance and validity of the models.

This might be a multiclass problem, where we could use inheritance to create subclasses for each of these panel data models. This would allow us to encapsulate the specific behaviors and characteristics of each model in its own class, while still sharing common functionality in a parent class.

The class should be designed with usability in mind, providing clear and intuitive methods for users to input their data, run the models, and access the results and diagnostics.

Please ensure that the code is well-documented, with clear comments explaining the purpose and functionality of each method and class. Unit tests should also be included to verify the correctness of the code.

Create Pandas Data Explorer Class

The current data exploration class is not good use pandas data profiler instead

import pandas as pd
from pandas_profiling import ProfileReport

class DataProfiler:
def init(self, dataframe):
"""
Initialize the DataProfiler with a Pandas DataFrame.

    :param dataframe: Pandas DataFrame to profile.
    """
    self.dataframe = dataframe

def generate_report(self, output_file=None):
    """
    Generate a profile report of the DataFrame.
    
    :param output_file: Optional file path to save the report as an HTML file.
    :return: ProfileReport object.
    """
    try:
        profile = ProfileReport(self.dataframe, explorative=True)
        if output_file:
            profile.to_file(output_file)
        return profile
    except Exception as e:
        print(f"Error generating report: {e}")

def set_dataframe(self, dataframe):
    """
    Set a new DataFrame for profiling.
    
    :param dataframe: Pandas DataFrame to profile.
    """
    self.dataframe = dataframe

def get_dataframe(self):
    """
    Get the current DataFrame being profiled.
    
    :return: Pandas DataFrame.
    """
    return self.dataframe

Add CLI Options

Add to each existing Class and any new class that is created

Create Prophet Forecasting Class

Here is starter code:

import pandas as pd
from prophet import Prophet
from prophet.diagnostics import cross_validation, performance_metrics
from prophet.serialize import model_to_json, model_from_json
import joblib

class ProphetModel:
def init(self):
"""
Initialize the ProphetModel.
"""
self.model = None
self.best_params = None

def fit(self, df, regressors=None, **kwargs):
    """
    Fit the Prophet model to the data.
    
    :param df: DataFrame with columns 'ds' and 'y' for time series data.
    :param regressors: List of additional regressor column names.
    :param kwargs: Additional keyword arguments for the Prophet model.
    """
    self.model = Prophet(**kwargs)
    if regressors:
        for regressor in regressors:
            self.model.add_regressor(regressor)
    self.model.fit(df)

def predict(self, future):
    """
    Predict using the fitted Prophet model.
    
    :param future: DataFrame with a column 'ds' and optional regressor columns.
    :return: DataFrame with predictions.
    """
    if self.model:
        return self.model.predict(future)
    else:
        print("Model has not been fitted yet.")
        return None

def save_model(self, file_path):
    """
    Save the trained model to a file.
    
    :param file_path: Path to the file where the model will be saved.
    """
    if self.model:
        with open(file_path, 'w') as f:
            f.write(model_to_json(self.model))
    else:
        print("Model has not been fitted yet.")

def load_model(self, file_path):
    """
    Load a trained model from a file.
    
    :param file_path: Path to the file where the model is saved.
    """
    with open(file_path, 'r') as f:
        self.model = model_from_json(f.read())

def tune_hyperparameters(self, df, regressors=None, initial='730 days', period='180 days', horizon='365 days'):
    """
    Tune hyperparameters for the Prophet model using cross-validation and performance metrics.
    
    :param df: DataFrame with columns 'ds' and 'y' for time series data.
    :param regressors: List of additional regressor column names.
    :param initial: Initial training period for cross-validation.
    :param period: Period between cutoff dates for cross-validation.
    :param horizon: Forecast horizon for cross-validation.
    """
    param_grid = {
        'changepoint_prior_scale': [0.001, 0.01, 0.1, 0.5],
        'seasonality_prior_scale': [0.01, 0.1, 1.0, 10.0],
        'holidays_prior_scale': [0.01, 0.1, 1.0, 10.0],
        'seasonality_mode': ['additive', 'multiplicative'],
        'yearly_seasonality': [5, 10, 15, 20],
        'weekly_seasonality': [5, 10, 15, 20],
        'daily_seasonality': [0, 5, 10]
    }

    best_rmse = float('inf')
    best_params = {}

    for cps in param_grid['changepoint_prior_scale']:
        for sps in param_grid['seasonality_prior_scale']:
            for hps in param_grid['holidays_prior_scale']:
                for sm in param_grid['seasonality_mode']:
                    for ys in param_grid['yearly_seasonality']:
                        for ws in param_grid['weekly_seasonality']:
                            for ds in param_grid['daily_seasonality']:
                                params = {
                                    'changepoint_prior_scale': cps,
                                    'seasonality_prior_scale': sps,
                                    'holidays_prior_scale': hps,
                                    'seasonality_mode': sm,
                                    'yearly_seasonality': ys,
                                    'weekly_seasonality': ws,
                                    'daily_seasonality': ds
                                }

                                model = Prophet(**params)
                                if regressors:
                                    for regressor in regressors:
                                        model.add_regressor(regressor)
                                model.fit(df)
                                
                                df_cv = cross_validation(model, initial=initial, period=period, horizon=horizon)
                                df_p = performance_metrics(df_cv)
                                rmse = df_p['rmse'].mean()

                                if rmse < best_rmse:
                                    best_rmse = rmse
                                    best_params = params

    self.best_params = best_params
    print(f"Best hyperparameters: {self.best_params}")

def fit_with_best_params(self, df, regressors=None):
    """
    Fit the Prophet model with the best hyperparameters.
    
    :param df: DataFrame with columns 'ds' and 'y' for time series data.
    :param regressors: List of additional regressor column names.
    """
    if self.best_params:
        self.fit(df, regressors, **self.best_params)
    else:
        print("Hyperparameters have not been tuned yet.")

Create a Modern Python Class for API Data Retrieval

We need to create a modern Python class that can retrieve data from APIs using pull requests. This class should be designed with best practices in mind to ensure efficiency, readability, and maintainability.

Here are some best practices to consider:

  1. Use of Requests Library: The Requests library is a simple yet powerful HTTP library for Python, which can be used to send HTTP requests. It should be used for making the API calls.

  2. Error Handling: The class should have robust error handling to manage potential issues that may arise during the API call, such as timeouts, connection errors, and HTTP errors.

  3. Rate Limiting: If the API has a rate limit, the class should be able to handle it gracefully. This could be achieved by adding delays or using a backoff strategy.

  4. Authentication: If the API requires authentication, the class should provide a secure way to handle this. Avoid hardcoding credentials in the code.

  5. Logging: Implement logging to track the API calls and their responses. This will be helpful for debugging and monitoring purposes.

  6. Unit Testing: The class should be covered by unit tests to ensure its functionality and to prevent regressions in the future.

  7. Documentation: Each method in the class should be well-documented. The documentation should explain what the method does, its parameters, its return value, and any exceptions it might raise.

  8. Modularity: The class should be designed in a way that it can be easily extended or modified in the future. This can be achieved by following principles like Single Responsibility and Open-Closed from SOLID principles.

Please feel free to add any other best practices that you think should be considered while creating this class.

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.