GithubHelp home page GithubHelp logo

gyula-ny / cp-starterkit Goto Github PK

View Code? Open in Web Editor NEW
0.0 1.0 0.0 20 KB

License: GNU Lesser General Public License v2.1

Makefile 19.37% JavaScript 58.74% SCSS 0.08% HTML 3.54% Shell 10.19% Python 8.07%

cp-starterkit's Introduction

Cockpit Starter Kit

Scaffolding for a Cockpit module.

Getting and building the source

Make sure you have npm available (usually from your distribution package). These commands check out the source and build it into the dist/ directory:

git clone https://github.com/cockpit-project/starter-kit.git
cd starter-kit
make

Installing

make install compiles and installs the package in /usr/share/cockpit/. The convenience targets srpm and rpm build the source and binary rpms, respectively. Both of these make use of the dist target, which is used to generate the distribution tarball. In production mode, source files are automatically minified and compressed. Set NODE_ENV=production if you want to duplicate this behavior.

For development, you usually want to run your module straight out of the git tree. To do that, link that to the location were cockpit-bridge looks for packages:

mkdir -p ~/.local/share/cockpit
ln -s `pwd`/dist ~/.local/share/cockpit/starter-kit

After changing the code and running make again, reload the Cockpit page in your browser.

You can also use watch mode to automatically update the webpack on every code change with

$ npm run watch

or

$ make watch

Running eslint

Cockpit Starter Kit uses ESLint to automatically check JavaScript code style in .js and .jsx files.

The linter is executed within every build as a webpack preloader.

For developer convenience, the ESLint can be started explicitly by:

$ npm run eslint

Violations of some rules can be fixed automatically by:

$ npm run eslint:fix

Rules configuration can be found in the .eslintrc.json file.

Running tests locally

Run make check to build an RPM, install it into a standard Cockpit test VM (centos-8-stream by default), and run the test/check-application integration test on it. This uses Cockpit's Chrome DevTools Protocol based browser tests, through a Python API abstraction. Note that this API is not guaranteed to be stable, so if you run into failures and don't want to adjust tests, consider checking out Cockpit's test/common from a tag instead of main (see the test/common target in Makefile).

After the test VM is prepared, you can manually run the test without rebuilding the VM, possibly with extra options for tracing and halting on test failures (for interactive debugging):

TEST_OS=centos-8-stream test/check-application -tvs

You can also run the test against a different Cockpit image, for example:

TEST_OS=fedora-34 make check

Running tests in CI

These tests can be run in Cirrus CI, on their free Linux Containers environment which explicitly supports /dev/kvm. Please see Quick Start how to set up Cirrus CI for your project after forking from starter-kit.

The included .cirrus.yml runs the integration tests for two operating systems (Fedora and CentOS 8). Note that if/once your project grows bigger, or gets frequent changes, you may need to move to a paid account, or different infrastructure with more capacity.

Tests also run in Packit for all currently supported Fedora releases; see the packit.yaml control file. You need to enable Packit-as-a-service in your GitHub project to use this. To run the tests in the exact same way for upstream pull requests and for Fedora package update gating, the tests are wrapped in the FMF metadata format for using with the tmt test management tool. Note that Packit tests can not run their own virtual machine images, thus they only run @nondestructive tests.

Customizing

After cloning the Starter Kit you should rename the files, package names, and labels to your own project's name. Use these commands to find out what to change:

find -iname '*starter*'
git grep -i starter

Automated release

Once your cloned project is ready for a release, you should consider automating that. Cockpituous release aims to fully automate project releases to GitHub, Fedora, Ubuntu, COPR, Docker Hub, and other places. The intention is that the only manual step for releasing a project is to create a signed tag for the version number; pushing the tag then triggers a GitHub action that calls a set of release scripts.

starter-kit includes an example cockpitous release script, with detailed comments how to use it. There is also an example GitHub release action to set up secrets and run cockpituous.

Automated maintenance

It is important to keep your NPM modules up to date, to keep up with security updates and bug fixes. This is done with the npm-update bot script which is run weekly or upon manual request through the npm-update.yml GitHub action.

Further reading

cp-starterkit's People

Contributors

gyula-ny avatar

Watchers

 avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.