GithubHelp home page GithubHelp logo

heft-scheduling's Introduction

HEFT-Scheduling Algorithm

C++ implemntation of Performance-effective and low-complexity task scheduling for heterogeneous computing

##About Efficient application scheduling is critical for achieving high performance in heterogeneous computing environments. The application scheduling problem has been shown to be NP-complete in general cases as well as in several restricted cases. Because of its key importance, this problem has been extensively studied and various algorithms have been proposed in the literature which are mainly for systems with homogeneous processors. Although there are a few algorithms in the literature for heterogeneous processors, they usually require significantly high scheduling costs and they may not deliver good quality schedules with lower costs. In this paper, we present two novel scheduling algorithms for a bounded number of heterogeneous processors with an objective to simultaneously meet high performance and fast scheduling time, which are called the Heterogeneous Earliest-Finish-Time (HEFT) algorithm and the Critical-Path-on-a-Processor (CPOP) algorithm. The HEFT algorithm selects the task with the highest upward rank value at each step and assigns the selected task to the processor, which minimizes its earliest finish time with an insertion-based approach. On the other hand, the CPOP algorithm uses the summation of upward and downward rank values for prioritizing tasks. Another difference is in the processor selection phase, which schedules the critical tasks onto the processor that minimizes the total execution time of the critical tasks. In order to provide a robust and unbiased comparison with the related work, a parametric graph generator was designed to generate weighted directed acyclic graphs with various characteristics. The comparison study, based on both randomly generated graphs and the graphs of some real applications, shows that our scheduling algorithms significantly surpass previous approaches in terms of both quality and cost of schedules, which are mainly presented with schedule length ratio, speedup, frequency of best results, and average scheduling time metrics.

##Research Paper

Link

###Authors

  • Topcuoglu, H - Comput. Eng. Dept., Marmara Univ., Istanbul, Turkey
  • Hariri, S. - Min-You Wu

heft-scheduling's People

Contributors

hackerkid avatar

Stargazers

Javed Khan avatar  avatar  avatar AlexanderChen avatar  avatar  avatar  avatar Brian Zhan avatar Bo Wang avatar Myeonggyun Han avatar  avatar

Watchers

James Cloos avatar  avatar  avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.