GithubHelp home page GithubHelp logo

hayscoding / polysemy Goto Github PK

View Code? Open in Web Editor NEW

This project forked from polysemy-research/polysemy

0.0 1.0 0.0 549 KB

:gemini: higher-order, no-boilerplate, zero-cost monads

License: BSD 3-Clause "New" or "Revised" License

Haskell 100.00%

polysemy's Introduction

Polysemy

 

polysemy

Build Status Hackage Hackage

Dedication

The word 'good' has many meanings. For example, if a man were to shoot his grandmother at a range of five hundred yards, I should call him a good shot, but not necessarily a good man.

Gilbert K. Chesterton

Overview

polysemy is a library for writing high-power, low-boilerplate, zero-cost, domain specific languages. It allows you to separate your business logic from your implementation details. And in doing so, polysemy lets you turn your implementation code into reusable library code.

It's like mtl but composes better, requires less boilerplate, and avoids the O(n^2) instances problem.

It's like freer-simple but more powerful and 35x faster.

It's like fused-effects but with an order of magnitude less boilerplate.

Additionally, unlike mtl, polysemy has no functional dependencies, so you can use multiple copies of the same effect. This alleviates the need for ugly hacks band-aids like classy lenses, the ReaderT pattern and nicely solves the trouble with typed errors.

Concerned about type inference? Check out polysemy-plugin, which should perform just as well as mtl's! Add polysemy-plugin to your package.yaml or .cabal file's dependencies section to use. Then turn it on with a pragma in your source-files:

{-# OPTIONS_GHC -fplugin=Polysemy.Plugin #-}

Or by adding -fplugin=Polysemy.Plugin to your package.yaml/.cabal file ghc-options section.

Features

  • Effects are higher-order, meaning it's trivial to write bracket and local as first-class effects.
  • Effects are low-boilerplate, meaning you can create new effects in a single-digit number of lines. New interpreters are nothing but functions and pattern matching.
  • Effects are zero-cost, meaning that GHC1 can optimize away the entire abstraction at compile time.

1: Unfortunately this is not true in GHC 8.6.3, but will be true in GHC 8.10.1.

Examples

Make sure you read the Necessary Language Extensions before trying these yourself!

Teletype effect:

{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE LambdaCase, BlockArguments #-}
{-# LANGUAGE GADTs, FlexibleContexts, TypeOperators, DataKinds, PolyKinds #-}

import Polysemy
import Polysemy.Input
import Polysemy.Output

data Teletype m a where
  ReadTTY  :: Teletype m String
  WriteTTY :: String -> Teletype m ()

makeSem ''Teletype

runTeletypeIO :: Member (Lift IO) r => Sem (Teletype ': r) a -> Sem r a
runTeletypeIO = interpret $ \case
  ReadTTY      -> sendM getLine
  WriteTTY msg -> sendM $ putStrLn msg

runTeletypePure :: [String] -> Sem (Teletype ': r) a -> Sem r ([String], a)
runTeletypePure i
  = runFoldMapOutput pure  -- For each WriteTTY in our program, consume an output by appending it to the list in a ([String], a)
  . runListInput i         -- Treat each element of our list of strings as a line of input
  . reinterpret2 \case     -- Reinterpret our effect in terms of Input and Output
      ReadTTY -> maybe "" id <$> input
      WriteTTY msg -> output msg


echo :: Member Teletype r => Sem r ()
echo = do
  i <- readTTY
  case i of
    "" -> pure ()
    _  -> writeTTY i >> echo


-- Let's pretend
echoPure :: [String] -> Sem '[] ([String], ())
echoPure = flip runTeletypePure echo

pureOutput :: [String] -> [String]
pureOutput = fst . run . echoPure

-- Now let's do things
echoIO :: Sem '[Lift IO] ()
echoIO = runTeletypeIO echo

-- echo forever
main :: IO ()
main = runM echoIO

Resource effect:

{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE LambdaCase, BlockArguments #-}
{-# LANGUAGE GADTs, FlexibleContexts, TypeOperators, DataKinds, PolyKinds, TypeApplications #-}

import Polysemy
import Polysemy.Input
import Polysemy.Output
import Polysemy.Error
import Polysemy.Resource

-- Using Teletype effect from above

data CustomException = ThisException | ThatException deriving Show

program :: Members '[Resource, Teletype, Error CustomException] r => Sem r ()
program = catch @CustomException work $ \e -> writeTTY ("Caught " ++ show e)
  where work = bracket (readTTY) (const $ writeTTY "exiting bracket") $ \input -> do
          writeTTY "entering bracket"
          case input of
            "explode"     -> throw ThisException
            "weird stuff" -> writeTTY input >> throw ThatException
            _             -> writeTTY input >> writeTTY "no exceptions"

main :: IO (Either CustomException ())
main = (runM .@ runResourceInIO .@@ runErrorInIO @CustomException) . runTeletypeIO $ program

Easy.

Friendly Error Messages

Free monad libraries aren't well known for their ease-of-use. But following in the shoes of freer-simple, polysemy takes a serious stance on providing helpful error messages.

For example, the library exposes both the interpret and interpretH combinators. If you use the wrong one, the library's got your back:

runResource
    :: forall r a
     . Sem (Resource ': r) a
    -> Sem r a
runResource = interpret $ \case
  ...

makes the helpful suggestion:

    • 'Resource' is higher-order, but 'interpret' can help only
      with first-order effects.
      Fix:
        use 'interpretH' instead.
    • In the expression:
        interpret
          $ \case

Likewise it will give you tips on what to do if you forget a TypeApplication or forget to handle an effect.

Don't like helpful errors? That's OK too --- just flip the error-messages flag and enjoy the raw, unadulterated fury of the typesystem.

Necessary Language Extensions

You're going to want to stick all of this into your package.yaml file.

  ghc-options: -O2 -flate-specialise -fspecialise-aggressively
  default-extensions:
    - DataKinds
    - FlexibleContexts
    - GADTs
    - LambdaCase
    - PolyKinds
    - RankNTypes
    - ScopedTypeVariables
    - TypeApplications
    - TypeOperators
    - TypeFamilies

polysemy's People

Contributors

isovector avatar gelisam avatar proofofkeags avatar googleson78 avatar thematten avatar jhenahan avatar jkachmar avatar csasarak avatar ramirez7 avatar infinisil avatar tempname11 avatar

Watchers

James Cloos avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.