GithubHelp home page GithubHelp logo

jacobwilliams / numdiff Goto Github PK

View Code? Open in Web Editor NEW
65.0 8.0 7.0 4.44 MB

Modern Fortran Numerical Differentiation Library

License: Other

Fortran 100.00%
differentiation numerical-methods optimization sparsity-optimization graph-coloring finite-differences numerical-differentiation

numdiff's Introduction

NumDiff

Brief description

NumDiff provides a modern Fortran interface for computing the Jacobian (derivative) matrix of m nonlinear functions which depend on n variables. The Jacobian matrix is required for various applications, including numerical optimization. It can also be used to test the accuracy of gradients computed by other means. The library also provides for computing the sparsity of this matrix, and returning the Jacobian in sparse or dense form.

Status

GitHub release Build Status codecov last-commit

This is currently a work in progress. The goal is a comprehensive library that contains a full suite of computationally efficient implementations of algorithms for sparsity determination and numerical differentiation. This code is hosted on GitHub at: https://github.com/jacobwilliams/NumDiff

To Do

  • Computing the nonlinear sparsity pattern
    • Specified by the user
    • Assume all elements true
    • Three random points within variable bounds (have the option to specify separate bounds for this purpose)
  • Various order finite different gradient methods
    • 2-point (backward 1, forward 1)
    • 3-point (backward 2, central, forward 2)
    • 4-point (backward 3, backward 2, forward 2, forward 3)
    • 5-point (backward 4, backward 3, central, forward 3, forward 4)
    • 6-point (backward 5, backward 4, backward 3, forward 3, forward 4, forward 5)
    • 7-point (backward 6, backward 5, backward 4, central, forward 4, forward 5, forward 6)
    • 8-point (backward 7, backward 6, backward 5, backward 4, forward 4, forward 5, forward 6, forward 7)
    • 9-point (backward 8, backward 7, backward 6, backward 5, central, forward 5, forward 6, forward 7, forward 8)
    • 11-point (central)
    • 13-point (central)
    • 15-point (central)
    • 17-point (central)
  • Perturbations should respect variable bounds
  • Neville's process
  • Ability to use different methods for different columns
  • Jacobian partitioning to compute multiple columns at the same time
  • Estimate the optimal perturbation step size
  • Computing the linear sparsity pattern (constant elements of Jacobian)
  • Add other gradient methods?
  • Also compute Hessian matrix?
  • OpenMP or Coarrays for parallelization
  • Testing for computational efficiency
  • General code cleanup

Building NumDiff

FPM

A Fortran Package Manager manifest file is included, so that the library and tests cases can be compiled with FPM. For example:

fpm build --profile release
fpm test --profile release

To use NumDiff within your FPM project, add the following to your fpm.toml file:

[dependencies]
NumDiff = { git="https://github.com/jacobwilliams/NumDiff.git" }

or, to use a specific version:

[dependencies]
NumDiff = { git="https://github.com/jacobwilliams/NumDiff.git", tag = "1.7.0" }

To generate the documentation using FORD, run:

  ford ford.md

By default, the library is built with double precision (real64) real values. Explicitly specifying the real kind can be done using the following processor flags:

Preprocessor flag Kind Number of bytes
REAL32 real(kind=real32) 4
REAL64 real(kind=real64) 8
REAL128 real(kind=real128) 16

For example, to build a single precision version of the library, use:

fpm build --profile release --flag "-DREAL32"

Note that the pyplot-fortran library is a dependency for one of the test cases. FPM will automatically download the right version.

Documentation

The latest API documentation can be found here. This was generated from the source code using FORD (note that the included build.sh script will also generate these files).

License

The NumDiff source code and related files and documentation are distributed under a permissive free software license (BSD-style).

References

  • J. Oliver, "An algorithm for numerical differentiation of a function of one real variable", Journal of Computational and Applied Mathematics 6 (2) (1980) 145-160. Fortran 77 code from NIST
  • Thomas F. Coleman, Burton S. Garbow, Jorge J. More, "Algorithm 618: FORTRAN subroutines for estimating sparse Jacobian Matrices", ACM Transactions on Mathematical Software (TOMS), Volume 10 Issue 3, Sept. 1984, Pages 346-347
  • G. E. Mullges, F. Uhlig, "Numerical Algorithms with Fortran", Springer, 1996.

numdiff's People

Contributors

jacobwilliams avatar

Stargazers

 avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar

Watchers

 avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar

numdiff's Issues

c -version

I would like to know whether this has a c version?

Stack overflow

Some parts of the code can stack overflow on windows when the problem is very large.

User-specified partition

Add an option to set_sparsity_pattern to also optionally input a user-specified sparsity partition.

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.