GithubHelp home page GithubHelp logo

jeffgan99 / relativepose Goto Github PK

View Code? Open in Web Editor NEW

This project forked from zhenpeiyang/relativepose

0.0 0.0 0.0 927 KB

Extreme Relative Pose Estimation for RGB-D Scans via Scene Completion

License: BSD 3-Clause "New" or "Revised" License

Python 100.00%

relativepose's Introduction

Extreme Relative Pose Estimation for RGB-D Scans via Scene Completion

Pytorch implementation of paper "Extreme Relative Pose Estimation for RGB-D Scans via Scene Completion"

alt tag

Prerequisites:

Folder Organization

please make sure to have following folder structure:

RelativePose/
    data/
        dataList/
        pretrained_model/
    experiments/
    tmp/

Dataset Download

images: suncg,matterport,scannet
data list: suncg,matterport,scannet
pretrained model: suncg,matterport,scannet
Images should be uncompressed under data/ folder. The data list contains the split used in our experiments, and should be placed under data/dataList/ folder. The pretrained model should be placed under data/pretrained_model/ folder.

Usage

training feature network

# suncg 
python mainFeatureLearning.py --exp featSuncg --g --batch_size=2 --featurelearning=1 --maskMethod=second --resume --dataList=suncg --outputType=rgbdnsf --snumclass=15
# matterport 
python mainFeatureLearning.py --exp featMatterport --g --batch_size=2 --featurelearning=1 --maskMethod=second --resume --dataList=matterport --outputType=rgbdnsf --snumclass=15
# scannet 
python mainFeatureLearning.py --exp featScannet --g --batch_size=2 --featurelearning=1 --maskMethod=kinect --resume --dataList=scannet --outputType=rgbdnsf --snumclass=21

training completion module

# suncg 
python mainPanoCompletion2view.py --exp compSuncg--g --batch_size=2 --featurelearning=1 --maskMethod=second --resume --dataList=suncg --outputType=rgbdnsf --snumclass=15
# matterport 
python mainPanoCompletion2view.py --exp compMatterport --g --batch_size=2 --featurelearning=1 --maskMethod=second --resume --dataList=matterport --outputType=rgbdnsf --snumclass=15
# scannet 
python mainPanoCompletion2view.py --exp compScannet  --g --batch_size=2 --featurelearning=1 --maskMethod=kinect --resume --dataList=scannet --outputType=rgbdnsf --snumclass=21 --useTanh=0

train relative pose module

python trainRelativePoseModuleRecFD.py --exp fd_param --dataset=suncg --snumclass=15 --split=val --para_init={param for previous iter} --rlevel={recurrent level}

The trained parameters for relative pose module are provided in data/relativePoseModule/

Evaluation

python evaluation.py --dataList={suncg,matterport,scannet} --method={ours,ours_nr,ours_nc,gs,cgs,super4pcs} --exp=eval --num_repeat=10 --para={param file}

Noted that you need place Super4PCS binary under the RelativePose/ in order to run its evaluation.

Author

Zhenpei Yang

relativepose's People

Contributors

yzp12 avatar zhenpeiyang avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.