GithubHelp home page GithubHelp logo

jhtong33 / seispy Goto Github PK

View Code? Open in Web Editor NEW

This project forked from xumi1993/seispy

0.0 0.0 0.0 21.84 MB

Python module of seismology and receiver functions

Home Page: https://seispy.xumijian.me

License: GNU General Public License v3.0

Python 100.00%

seispy's Introduction

License GitHub code size in bytes GitHub repo size DOI

CRV test codecov Upload Python Package Seispy docs

Anaconda-Server Badge Conda Version Anaconda-Server Badge

PyPI PyPI - Python Version

GitHub stars

Seispy is a Python module for processing seismological data and calculating Receiver Functions. The advanced functions are available to improve the Obspy.

Acknowledgements

For the use of the Seispy package, please cite as:

  • Xu, M. & He, J. (2023). Seispy: Python Module for Batch Calculation and Postprocessing of Receiver Functions. Seismological Research Letters, 94 (2A): 935–943. doi: https://doi.org/10.1785/0220220288

For 3D time-difference correction, please also consider citing:

  • Xu, M., Huang, H., Huang, Z., Wang, P., Wang, L., Xu, M., ... & Yuan, X. (2018). Insight into the subducted Indian slab and origin of the Tengchong volcano in SE Tibet from receiver function analysis. Earth and Planetary Science Letters, 482, 567-579. doi: https://doi.org/10.1016/j.epsl.2017.11.048

For 2D and 3D CCP stacking, please also consider citing:

  • Xu, M., Huang, Z., Wang, L., Xu, M., Zhang, Y., Mi, N., ... & Yuan, X. (2020). Sharp lateral Moho variations across the SE Tibetan margin and their implications for plateau growth. Journal of Geophysical Research: Solid Earth, 125(5), e2019JB018117. doi: https://doi.org/10.1029/2019JB018117

Installation

See Seispy documentation in detail.

Libraries

  • seispy.distaz: Calculate distance and azimuth credited by the lithospheric seismology program at USC, but numpy.ndarray operations are supported.
  • seispy.geo: Tiny codes of geophysics.
  • seispy.decon: Functions of deconvolution transferred from iwbailey/processRFmatlab including
    • Iterative time domain deconvolution method (Ligorría and Ammon 1999 BSSA).
    • Water level frequency domain deconvolution method (CJ. Ammon 1991 BSSA)
  • seispy.rf: Procedure for RF calculation. The functions of match_eq, search_eq invoked obspy.core.UTCDateTime and obspy.clients from the Obspy.
  • seispy.eq: RF processing for each event, which invoked obspy.io.sac, obspy.signal, obspy.taup and obspy.core.Stream from the Obspy.
  • seispy.hk: H-k stacking for single station (Zhu and Kanamori 2000 JGR).
  • seispy.rfani: A joint method for crustal anisotropic calculation (Liu and Niu 2011 GJI).
  • seispy.slantstack: Slant stacking for single station (Tauzin et al., 2008)
  • seispy.rfcorrect: Subsequent process of RFs including moveout correction and time to depth conversion (1D and 3D) (see Xu et al., 2018 EPSL)
  • seispy.ccpprofile: CCP stacking along a profile.
  • seispy.ccp3d: 3-D CCP stacking with extracting depth D410 and D660.

Commands

Receiver Functions

  • prf: Calculate PRFs for a station.
  • pickrf: Pick PRFs with virtual quality control after the calculation.
  • plotrt: Plot PRFs with R and T components order by back-azimuth.
  • plotr: Plot PRFs with R component order by back-azimuth.
  • hk: H-Kappa stacking for estimating Moho depth and crustal Vp/Vs.
  • rf2depth: Convert PRFs to depth axis.
  • ccp_profile: Stack PRFs along a profile with a CCP stacking method.
  • ccp3d: Stack PRFs with spaced bins.
  • rfani: Estimating crustal anisotropy with a joint method.
  • rfharmo: Harmonic decomposition to extract constant component of RF and plot dip/anisotropic components.
  • pickdepth: Pick depth of stacked PRFs following ccp3d

Others

  • veltxt2mod: Create 3D velocity model with numpy.lib.npyio.NpzFile format from a ASCII table file.
  • downlod_catalog: Download catalogs from FDSN web-service.
  • gen_rayp_lib: Generate a rap-parameter library with depth of source and epicentral distance.
  • setpar: Set up the values in configure files.

seispy's People

Contributors

xumi1993 avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.