GithubHelp home page GithubHelp logo

jinlongyu60 / deepaffinity Goto Github PK

View Code? Open in Web Editor NEW

This project forked from shen-lab/deepaffinity

0.0 1.0 0.0 229.24 MB

Protein-compound affinity prediction through unified RNN-CNN

License: GNU General Public License v3.0

Python 99.33% Shell 0.67%

deepaffinity's Introduction

DeepAffinity

Drug discovery demands rapid quantification of compound-protein interaction (CPI). However, there is a lack of methods that can predict compound-protein affinity from sequences alone with high applicability, accuracy, and interpretability. We present a integration of domain knowledges and learning-based approaches. Under novel representations of structurally-annotated protein sequences, a semi-supervised deep learning model that unifies recurrent and convolutional neural networks has been proposed to exploit both unlabeled and labeled data, for jointly encoding molecular representations and predicting affinities. Performances for new protein classes with few labeled data are further improved by transfer learning. Furthermore, novel attention mechanisms are developed and embedded to our model to add to its interpretability. Lastly, alternative representations using protein sequences or compound graphs and a unified RNN/GCNN-CNN model using graph CNN (GCNN) are also explored to reveal algorithmic challenges ahead.

Pre-requisite:

Table of contents:

  • data_script: Contain the supervised learning datasets(pIC50, pKi, pEC50, and pKd)
  • Seq2seq_models: Contain auto-encoder seq2seq models and their data for both SPS and SMILE representations
  • baseline_models: Contain shallow models for both Pfam/pubchem features and features generated from the encoder part of seq2seq model
  • Separate_models: Contain deep learning model for features generated from the encoder part of seq2seq model
  • Joint_models: Contain all the joint models including:
    • Separate attention mechanism
    • Marginalized attention mechanism
    • Joint attention mechanism
    • Graph convolution neural network (GCNN) with separate attention mechanism

Note:

We recommend referring to PubChem for canonical SMILES for compounds.

Citation:

If you find the code useful for your research, please consider citing our paper:

@article{karimi2018deepaffinity,
  title={DeepAffinity: Interpretable Deep Learning of Compound-Protein Affinity through Unified Recurrent and Convolutional Neural Networks},
  author={Karimi, Mostafa and Wu, Di and Wang, Zhangyang and Shen, Yang},
  journal={arXiv preprint arXiv:1806.07537},
  year={2018}
}

Contacts:

Yang Shen: [email protected]

Mostafa Karimi: [email protected]

deepaffinity's People

Contributors

mostafakarimi71 avatar shen-lab avatar yang-shen avatar

Watchers

James Cloos avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.