GithubHelp home page GithubHelp logo

jni / affinder Goto Github PK

View Code? Open in Web Editor NEW
16.0 4.0 13.0 330 KB

Quickly find the affine matrix mapping one image to another using manual correspondence points annotation

Home Page: https://jni.github.io/affinder/

License: BSD 3-Clause "New" or "Revised" License

Python 100.00%

affinder's Introduction

Description

This GUI plugin allows you to quickly find the affine matrix mapping one image to another using manual correspondence points annotation.

More simply, this plugin allows you to select corresponding points on an image, and a second image you wish to transform. It computes the requisite transformation matrix using Affine Transform, Euclidean Transform, or Similarity Transform, and performs this transformation on the moving image, aligning it to the reference image.

affinder-plugin.mp4

Who is This For?

This is a simple plugin which can be used on any 2D images, provided they can be loaded as layers into napari. The images need not be the same file format and this plugin also works with labels layers.

No prior understanding of the transformation methods is required, as they perform in the background based on the reference points selected.

How to Guide

You will need a combination of two or more 2D image and/or labels layers loaded into napari. Once you have installed affinder, you can find it in the dock widgets menu.

Affinder widget in the Plugins->Add Dock Widget menu

The first two dropdown boxes will be populated with the layers currently loaded into napari. Select a layer to use as reference, and another to transform.

Dropdowns allow you to select the reference and moving layers

Next, you can select the transformation model to use (affine is selected by default and is the least rigid transformation of those available). See below for a description of the different models.

Finally, you can optionally select a path to a text file for saving out the resulting transformation matrix.

When you click Start, affinder will add two points layers to napari. The plugin will also bring your reference image in focus, and its associated points layer. You can then start adding reference points by clicking on your image.

Adding reference points to layer

Once three points are added, affinder will switch focus to the moving image, and you should then proceed to select the corresponding three points.

Adding corresponding points to newly focused layer

affinder will immediately transform the moving image to align the points you've selected when you add your third corresponding point to your moving image.

The moving image is transformed once three points are added

From there, you can continue iteratively adding points until you are happy with the alignment. Affinder will switch focus between reference and moving image with each point.

Click Finish to exit affinder.

Transformation Models

There are three transformation models available for use with affinder. They are listed here in order of increasing rigidity in the types of transforms they will allow. The eponymous Affine Transform is the least rigid and is the default choice.

  • Affine Transform: the least rigid transformation, it preserves lines and parallelism, but not necessarily distance and angles. Translation, scaling, similarity, reflection, rotation and shearing are all valid affine transformations.

  • Similarity Transform: this is a "shape preserving" transformation, producing objects which are geometrically similar. Translation, rotation, reflection and uniform scaling are valid similarity transforms. Shearing is not.

  • Euclidean Transform: Also known as a rigid transformation, this transform preserves the Euclidean distance between each pair of points on the image. This includes rotation, translation and reflection but not scaling or shearing.

Getting Help

If you find a bug with affinder, or would like support with using it, please raise an issue on the GitHub repository.

How to Cite

Many plugins may be used in the course of published (or publishable) research, as well as during conference talks and other public facing events. If you'd like to be cited in a particular format, or have a DOI you'd like used, you should provide that information here.

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.