GithubHelp home page GithubHelp logo

jnorrid / circle Goto Github PK

View Code? Open in Web Editor NEW

This project forked from rsta2/circle

1.0 0.0 0.0 6.93 MB

A C++ bare metal environment for Raspberry Pi with USB (32 and 64 bit)

Home Page: https://circle-rpi.readthedocs.io

License: GNU General Public License v3.0

Shell 0.02% JavaScript 0.20% C++ 32.88% Python 0.08% C 65.72% Assembly 0.54% Makefile 0.56%

circle's Introduction

Circle

Overview

Circle is a C++ bare metal programming environment for the Raspberry Pi. It should be usable on all existing models (tested on model A+, B, B+, on Raspberry Pi 2, 3, 4, 400, 5 and on Raspberry Pi Zero), except on the Raspberry Pi Pico, which is not supported. Circle provides several ready-tested C++ classes and add-on libraries, which can be used to control different hardware features of the Raspberry Pi. Together with Circle there are delivered several sample programs, which demonstrate the use of its classes. Circle can be used to create 32-bit or 64-bit bare metal applications.

Circle includes bigger (optional) third-party C-libraries for specific purposes in addon/ now. This is the reason why GitHub rates the project as a C-language-project. The main Circle libraries are written in C++ using classes instead. That's why it is called a C++ programming environment.

The 47th Step

This release provides a number of new features for the Raspberry Pi 5, which were already available for earlier models:

  • SPI master support (polling and DMA driver)
  • I2S sound (output or input, DMA or programmed I/O operation)
  • PWM sound (requires external circuit on GPIO12/13 or GPIO18/19)
  • PWM output (4 channels)
  • GPIO clocks (GP0-2)
  • CGPIOPin::WriteAll() and CGPIOPin::ReadAll()

The following new hardware features of the Raspberry Pi 5 are supported now:

  • Real-time clock (class CFirmwareRTC in addon/rtc)
  • Power button (Function is_power_button_pressed())
  • Function main() can return EXIT_POWER_OFF to power-off the system
  • 8-channels I2S sound output (via GPIO21/23/25/27, e.g. for HifiBerry DAC8x)

The WM8960 I2S sound driver has been revised and provides a better audio quality and the sound controller jack and control functions now. The new sound controller control ControlALC (Automatic Level Control) has been defined and implemented for the WM8960. ALC is disabled by default now. The WM8960 driver supports sample rates of 44100 and 48000.

More news:

  • A new IRQ-based driver for the I2C master of Raspberry Pi 1-4 is available.
  • A character mode for ST7789-based dot-matrix displays is available.
  • The timing of the GPIO pin driver has been improved on the Raspberry Pi 5 by using the RIO module.
  • There is a new GPIO pin mode GPIOModeNone, which disables the GPIO pin on the Raspberry Pi 5. On other models it has the same function as GPIOModeInput.
  • The new static method CGPIOPin::SetModeAll() allows to set the mode of the GPIO pins 0-31 at once to input or output.
  • IP multi-cast support level 1 according to RFC 1112 is implemented (send only).
  • The LVGL support has been updated to LVGL v8.3.11.

Fixes:

  • The USB serial CDC gadget was not detected on Windows 10.
  • The Raspberry Pi Debug Probe UART did not work with the USB serial CDC driver.
  • The class CPWMSoundDevice did not apply the full chunk size.

The recommended firmware and toolchain versions have been updated.

Features

Only the features with a "x" or other info are currently supported on the Raspberry Pi 5.

Circle supports the following features:

Group Features Raspberry Pi 5
C++ build environment AArch32 and AArch64 support AArch64 only
Basic library functions (e.g. new and delete) x
Enables all CPU caches using the MMU x
Interrupt support (IRQ and FIQ) IRQ only
Multi-core support (Raspberry Pi 2, 3 and 4) x
Cooperative non-preemtive scheduler x
CPU clock rate management x
Clang/LLVM support (experimental) x
Debug support Kernel logging to screen, UART and/or syslog server x
C-assertions with stack trace x
Hardware exception handler with stack trace x
GDB support using rpi_stub (Raspberry Pi 2 and 3)
Serial bootloader (by David Welch) included x
Software profiling support (single-core) x
QEMU support
SoC devices GPIO pins (with interrupt, Act LED) and clocks x
Frame buffer (screen driver with escape sequences) limited
UART(s) (Polling and interrupt driver) x
System timer (with kernel timers) x
Platform DMA controller DMA40 only
RP1 platform DMA controller (Raspberry Pi 5 only) x
EMMC SD card interface driver x
SDHOST SD card interface driver (Raspberry Pi 1-3)
PWM output (2 channels) 4 channels
PWM sound output (on headphone jack) with adapter
I2C master(s) and slave masters only
SPI0 master (Polling and DMA driver) x
SPI1 auxiliary master (Polling)
SPI3-6 masters of Raspberry Pi 4 (Polling) SPI1-3 and 5
SMI master (experimental)
I2S sound output and input x
HDMI sound output (without VCHIQ)
Hardware random number generator x
Watchdog device x
Official Raspberry Pi touch screen
VCHIQ interface and audio service drivers
BCM54213PE Gigabit Ethernet NIC of Raspberry Pi 4
MACB / GEM Gigabit Ethernet NIC of Raspberry Pi 5 x
Wireless LAN access x
USB Host controller interface (HCI) drivers x
Standard hub driver (USB 2.0 only) x
HID class device drivers (keyboard, mouse, gamepad) x
Driver for on-board Ethernet device (SMSC951x)
Driver for on-board Ethernet device (LAN7800)
Driver for USB mass storage devices (bulk only) x
Driver for USB audio streaming devices (RPi 4 only) x
Drivers for different USB serial devices x
Audio class MIDI input support x
Touchscreen driver (digitizer mode) x
Printer driver x
MIDI gadget driver
Serial CDC gadget driver (experimental)
File systems Internal FAT driver (limited function) x
FatFs driver (full function, by ChaN) x
TCP/IP networking Protocols: ARP, IP, ICMP, UDP, TCP x
Clients: DHCP, DNS, NTP, HTTP, Syslog, MQTT x
Servers: HTTP, TFTP x
BSD-like C++ socket API x
Graphics OpenGL ES 1.1 and 2.0, OpenVG 1.1, EGL 1.4
(not on Raspberry Pi 4)
uGUI (by Achim Doebler)
LVGL (by LVGL Kft) x
2D graphics class in base library
Not supported Bluetooth

Building

For building 64-bit applications (AArch64) see the next section.

Circle does not support 32-bit applications on the Raspberry Pi 5.

This describes building on PC Linux. See the file doc/windows-build.txt for information about building on Windows. If building for the Raspberry Pi 1 you need a toolchain for the ARM1176JZF core (with EABI support). For Raspberry Pi 2/3/4 you need a toolchain with Cortex-A7/-A53/-A72 support. A toolchain, which works for all of these, can be downloaded here. Circle has been tested with the version 13.2.Rel1 (arm-gnu-toolchain-13.2.rel1-x86_64-arm-none-eabi.tar.xz) from this website. This is the recommended toolchain for AArch32 builds.

First edit the file Rules.mk and set the Raspberry Pi version (RASPPI, 1, 2, 3 or 4) and the PREFIX of your toolchain commands. Alternatively you can create a Config.mk file (which is ignored by git) and set the Raspberry Pi version and the PREFIX variable to the prefix of your compiler like this (don't forget the dash at the end):

RASPPI = 1
PREFIX = arm-none-eabi-

The following table gives support for selecting the right RASPPI value:

RASPPI Target Models Optimized for
1 kernel.img A, B, A+, B+, Zero, (CM) ARM1176JZF-S
2 kernel7.img 2, 3, Zero 2, (CM3) Cortex-A7
3 kernel8-32.img 3, Zero 2, (CM3) Cortex-A53
4 kernel7l.img 4B, 400, CM4 Cortex-A72

For a binary distribution you should do one build with RASPPI = 1, one with RASPPI = 2 and one build with RASPPI = 4 and include the created files kernel.img, kernel7.img and kernel7l.img. Optionally you can do a build with RASPPI = 3 and add the created file kernel8-32.img to provide an optimized version for the Raspberry Pi 3.

The configuration file Config.mk can be created using the configure tool too. Please enter ./configure -h for help on using it!

There are a number of configurable system options in the file include/circle/sysconfig.h. Please have a look into this file to learn, how you can configure Circle for your purposes. Some hardware configurations may require modifications to these options (e.g. using USB on the CM4).

Then go to the build root of Circle and do:

./makeall clean
./makeall

By default only the Circle libraries are built. To build a sample program after makeall go to its subdirectory and do make.

You can also build Circle on the Raspberry Pi itself (set PREFIX = (empty)) on Raspbian but you need some method to put the kernel.img file onto the SD(HC) card. With an external USB card reader on model B+ or Raspberry Pi 2/3/4 model B (4 USB ports) this should be no problem.

AArch64

Circle supports building 64-bit applications, which can be run on the Raspberry Pi 3, 4 or 5. There are also Raspberry Pi 2 versions and the Raspberry Pi Zero 2, which are based on the BCM2837 SoC. These Raspberry Pi versions can be used too (with RASPPI = 3).

The recommended toolchain to build 64-bit applications with Circle can be downloaded here. Circle has been tested with the version 13.2.Rel1 (arm-gnu-toolchain-13.2.rel1-x86_64-aarch64-none-elf.tar.xz) from this website. This is the recommended toolchain for AArch64 builds.

There are distro-provided toolchains on certain Linux platforms (e.g. g++-aarch64-linux-gnu on Ubuntu or gcc-c++-aarch64-linux-gnu on Fedora), which may work with Circle and can be a quick way to use it, but you have to test this by yourself. If you encounter problems (e.g. no reaction at all, link failure with external library) using a distro-provided toolchain, please try the recommended toolchain (see above) first, before reporting an issue.

First edit the file Rules.mk and set the Raspberry Pi architecture (AARCH, 32 or 64) and the PREFIX64 of your toolchain commands. The RASPPI variable has to be set to 3, 4 or 5 for AARCH = 64. Alternatively you can create a Config.mk file (which is ignored by git) and set the Raspberry Pi architecture and the PREFIX64 variable to the prefix of your compiler like this (don't forget the dash at the end):

AARCH = 64
RASPPI = 3
PREFIX64 = aarch64-none-elf-

The configuration file Config.mk can be created using the configure tool too. Please enter ./configure -h for help on using it!

Then go to the build root of Circle and do:

./makeall clean
./makeall

By default only the Circle libraries are built. To build a sample program after makeall go to its subdirectory and do make.

Installation

Copy the Raspberry Pi firmware (from boot/ directory, do make there to get them) files along with the kernel*.img (from sample/ subdirectory) to a SD(HC) card with FAT file system.

It is now always recommended to copy the file config32.txt (for 32-bit mode) or config64.txt (for 64-bit mode) from the boot/ directory to the SD(HC) card and to rename it to config.txt there. These files are especially required to enable FIQ use on the Raspberry Pi 4. Furthermore the additional file armstub7-rpi4.bin (for 32-bit mode) or armstub8-rpi4.bin (for 64-bit mode) is required on the SD card then. Please see boot/README for information on how to build these files.

Finally put the SD(HC) card into the Raspberry Pi.

Directories

  • include: The common header files, most class headers are in the include/circle/ subdirectory.
  • lib: The Circle class implementation and support files (other libraries are in subdirectories of lib/).
  • sample: Several sample applications using Circle in different subdirectories. The main function is implemented in the CKernel class.
  • addon: Contains contributed libraries and samples (has to be build manually).
  • app: Place your own applications here. If you have own libraries put them into app/lib/.
  • boot: Do make in this directory to get the Raspberry Pi firmware files required to boot.
  • doc: Additional documentation files.
  • test: Several test programs, which test different features of Circle.
  • tools: Tools for building Circle and for using Circle more comfortable (e.g. a serial bootloader).

Classes

The following C++ classes were added to Circle:

Base library

  • CDMAChannelRP1: RP1 platform DMA controller support (for Raspberry Pi 5)
  • CI2CMasterIRQ: Driver for I2C master devices (asynchronous using IRQ, for Raspberry Pi 1-4)

The available Circle classes are listed in the file doc/classes.txt. If you have Doxygen installed on your computer you can build a class documentation in doc/html/ using:

./makedoc

At the moment there are only a few classes described in detail for Doxygen.

Additional Topics

Trademarks

Raspberry Pi is a trademark of Raspberry Pi Ltd.

Linux is a trademark of Linus Torvalds.

PS3 and PS4 are registered trademarks of Sony Computer Entertainment Inc.

Windows, Xbox 360 and Xbox One are trademarks of the Microsoft group of companies.

Nintendo Switch is a trademark of Nintendo.

Khronos and OpenVG are trademarks of The Khronos Group Inc.

OpenGL ES is a trademark of Silicon Graphics Inc.

The micro:bit brand belongs to the Micro:bit Educational Foundation.

HDMI is a registered trademark of HDMI Licensing Administrator, Inc.

circle's People

Contributors

rsta2 avatar hinxx avatar dwhinham avatar diyelectromusic avatar xalior avatar smuehlst avatar seba1978 avatar pottendo avatar mjrgh avatar stdrc avatar mitsuji avatar matemaciek avatar kevinboone avatar yomboprime avatar jnorrid avatar ericfont avatar ar-nelson avatar aterialdawn avatar bcs1234 avatar konistehrad avatar thexxturboxx avatar timgates42 avatar elmfrain avatar flabbergast avatar hpingel avatar

Stargazers

 avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.