GithubHelp home page GithubHelp logo

kastnerkyle / cloudcontr Goto Github PK

View Code? Open in Web Editor NEW

This project forked from taiya/cloudcontr

0.0 1.0 0.0 29.6 MB

Automatically exported from code.google.com/p/skeletonization

MATLAB 99.65% M 0.35%

cloudcontr's Introduction

Point Cloud Skeletons via Laplacian-Based Contraction

(Automatically exported from code.google.com/p/skeletonization)

Bibtex

@inproceedings{cao_smi10,
author = {Junjie Cao and Andrea Tagliasacchi and Matt Olson and Hao Zhang and Zhixun Su},
title = {Point Cloud Skeletons via Laplacian-Based Contraction},
booktitle = {Proc. of IEEE Conf. on Shape Modeling and Applications},
year = 2015}

Abstract

We present an algorithm for curve skeleton extraction via Laplacian-based contraction. Our algorithm can be applied to surfaces with boundaries, polygon soups, and point clouds. We develop a contraction operation that is designed to work on generalized discrete geometry data, particularly point clouds, via local Delaunay triangulation and topological thinning. Our approach is robust to noise and can handle moderate amounts of missing data, allowing skeleton-based manipulation of point clouds without explicit surface reconstruction. By avoiding explicit reconstruction, we are able to perform skeleton-driven topology repair of acquired point clouds in the presence of large amounts of missing data. In such cases, automatic surface reconstruction schemes tend to produce incorrect surface topology. We show that the curve skeletons we extract provide an intuitive and easy-to-manipulate structure for effective topology modification, leading to more faithful surface reconstruction.

Compile and execution

The code should be able to run without any setup. Just run eg_skeleton_laplacian_rosa.m and you will find all info needed. More details about the code can be found in https://github.com/ataiya/cloudcontr/blob/master/matlab/readme.txt.

Data

Geometry models used in the paper are obtained from the AIM@SHAPE shape repository, the Stanford 3D Scanning repository, Lior Shapira, the Princeton Shape Benchmark, Hugues Hoppe, the Digital Plant Laboratory, and our own laser scanning using a Polhemus Cobra FastScan System. All the data used in our paper are saved in https://github.com/ataiya/cloudcontr/tree/master/data.

Downloads

Teaser of results

cloudcontr's People

Contributors

taiya avatar jjcao avatar

Watchers

James Cloos avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.