GithubHelp home page GithubHelp logo

kuzminadya / notation Goto Github PK

View Code? Open in Web Editor NEW

This project forked from aryszka/notation

0.0 1.0 0.0 121 KB

Formats Go values into strings similar to their literal representation.

License: MIT License

Go 99.35% Makefile 0.65%

notation's Introduction

Notation - print Go objects

Go Report Card codecov

This package can be used to print (or sprint) Go objects for debugging purposes, with optional wrapping (indentation) and optional type information.

Alternatives

Notation is similar to the following great, more established and mature packages:

Notation differs from these primarily in the 'flavor' of printing and the package interface.

Installation

go get github.com/aryszka/notation

Usage

Pass in the Go object(s) to be printed to one of the notation functions. These functions can be categorized into four groups:

  • Println: the Println type functions print Go objects to stderr with an additional newline at the end.
  • Print: similar to Println but without the extra newline.
  • Fprint: the Fprint type functions print Go objects to an arbitrary writer passed in as an argument.
  • Sprint: the Sprint type functions return the string representation of Go objects instead of printing them.

The format and the verbosity can be controlled with the suffixed variants of the above functions. By default, the input arguments are printed without types on a single line. The following suffixes are available:

  • w: wrap the output based on Go-style indentation
  • t: print moderately verbose type information, omitting where it can be trivially inferred
  • v: print verbose type information

When t or v are used together with w, they must follow w. The suffixes t and v cannot be used together.

Wrapping is not eager. It doesn't wrap a line when it can fit on 72 columns. It also tolerates longer lines up to 112 columns, when the output is considered to be more readable that way. This means very simple Go objects are not wrapped even with the w variant of the functions.

For the available functions, see also the godoc. (Alternatively: pkg.go.dev.)

Example

Assuming to have the required types defined, if we do the following:

b := bike{
	frame: frame{
		fork:       fork{},
		saddlePost: saddlePost{},
	},
	driveTrain: driveTrain{
		bottomBracket: bracket{},
		crank:         crank{wheels: 2},
		brakes:        []brake{{discSize: 160}, {discSize: 140}},
		derailleurs:   []derailleur{{gears: 2}, {gears: 11}},
		cassette:      cassette{wheels: 11},
		chain:         chain{},
		levers:        []lever{{true}, {true}},
	},
	wheels:    []wheel{{size: 700}, {size: 700}},
	handlebar: handlebar{},
	saddle:    saddle{},
}

b.frame.fork.wheel = &b.wheels[0]
b.frame.fork.handlebar = &b.handlebar
b.frame.fork.handlebar.levers = []*lever{&b.driveTrain.levers[0], &b.driveTrain.levers[1]}
b.frame.fork.frontBrake = &b.driveTrain.brakes[0]
b.frame.saddlePost.saddle = &b.saddle
b.frame.bottomBracket = &b.driveTrain.bottomBracket
b.frame.frontDerailleur = &b.driveTrain.derailleurs[0]
b.frame.rearDerailleur = &b.driveTrain.derailleurs[1]
b.frame.rearBrake = &b.driveTrain.brakes[1]
b.frame.rearWheel = &b.wheels[1]
b.frame.bottomBracket.crank = &b.driveTrain.crank
b.frame.bottomBracket.crank.chain = &b.driveTrain.chain
b.frame.rearWheel.cassette = &b.driveTrain.cassette
b.frame.rearWheel.cassette.chain = &b.driveTrain.chain

s := notation.Sprintw(b)

We get the following string:

{
	frame: {
		fork: {
			wheel: {size: 700, cassette: nil},
			handlebar: {
				levers: []{
					{withShift: true},
					{withShift: true},
				},
			},
			frontBrake: {discSize: 160},
		},
		saddlePost: {saddle: {}},
		bottomBracket: {crank: {wheels: 2, chain: {}}},
		frontDerailleur: {gears: 2},
		rearDerailleur: {gears: 11},
		rearBrake: {discSize: 140},
		rearWheel: {
			size: 700,
			cassette: {wheels: 11, chain: {}},
		},
	},
	driveTrain: {
		bottomBracket: {crank: {wheels: 2, chain: {}}},
		crank: {wheels: 2, chain: {}},
		brakes: []{{discSize: 160}, {discSize: 140}},
		derailleurs: []{{gears: 2}, {gears: 11}},
		cassette: {wheels: 11, chain: {}},
		chain: {},
		levers: []{{withShift: true}, {withShift: true}},
	},
	wheels: []{
		{size: 700, cassette: nil},
		{size: 700, cassette: {wheels: 11, chain: {}}},
	},
	handlebar: {levers: []{{withShift: true}, {withShift: true}}},
	saddle: {},
}

Using notation.Sprintwv instead of notation.Sprintw, we would get the following string:

bike{
	frame: frame{
		fork: fork{
			wheel: *wheel{
				size: float64(700),
				cassette: (*cassette)(nil),
			},
			handlebar: *handlebar{
				levers: []*lever{
					*lever{withShift: bool(true)},
					*lever{withShift: bool(true)},
				},
			},
			frontBrake: *brake{discSize: float64(160)},
		},
		saddlePost: saddlePost{saddle: *saddle{}},
		bottomBracket: *bracket{
			crank: *crank{
				wheels: int(2),
				chain: *chain{},
			},
		},
		frontDerailleur: *derailleur{gears: int(2)},
		rearDerailleur: *derailleur{gears: int(11)},
		rearBrake: *brake{discSize: float64(140)},
		rearWheel: *wheel{
			size: float64(700),
			cassette: *cassette{
				wheels: int(11),
				chain: *chain{},
			},
		},
	},
	driveTrain: driveTrain{
		bottomBracket: bracket{
			crank: *crank{
				wheels: int(2),
				chain: *chain{},
			},
		},
		crank: crank{wheels: int(2), chain: *chain{}},
		brakes: []brake{
			brake{discSize: float64(160)},
			brake{discSize: float64(140)},
		},
		derailleurs: []derailleur{
			derailleur{
				gears: int(2),
			},
			derailleur{
				gears: int(11),
			},
		},
		cassette: cassette{wheels: int(11), chain: *chain{}},
		chain: chain{},
		levers: []lever{
			lever{withShift: bool(true)},
			lever{withShift: bool(true)},
		},
	},
	wheels: []wheel{
		wheel{size: float64(700), cassette: (*cassette)(nil)},
		wheel{
			size: float64(700),
			cassette: *cassette{wheels: int(11), chain: *chain{}},
		},
	},
	handlebar: handlebar{
		levers: []*lever{
			*lever{withShift: bool(true)},
			*lever{withShift: bool(true)},
		},
	},
	saddle: saddle{},
}

Subtleties

Notation doesn't provide configuration options, we can just pick the preferred function and call it with the objects to be printed. The following details describe some of the behavior to be expected in case of various input objects.

Numbers

Numbers are printed based on the fmt package's default formatting. When printing with moderate type information, the type for the int, default width signed integers, will be omitted.

i := 42
notation.Printlnt(i)

Output:

42
Strings

When printing strings, by default they are escaped using the strconv.Quote function. However, when wrapping long strings, and the string contains a newline and doesn't contain a backquote, then the string is printed as a raw string literal, delimited by backquotes.

Short string:

s := `foobar
baz`
notation.Printlnw(s)

Output:

"foobar\nbaz"

Long string:

s := `The quick brown fox jumps over the lazy dog. The quick brown fox jumps over the lazy dog. The
quick brown fox jumps over the lazy dog. The quick brown fox jumps over the lazy dog. The quick brown
fox jumps over the lazy dog. The quick brown fox jumps over the lazy dog. The quick brown fox jumps
over the lazy dog. The quick brown fox jumps over the lazy dog. The quick brown fox jumps over the lazy
dog. The quick brown fox jumps over the lazy dog. The quick brown fox jumps over the lazy dog. The
quick brown fox jumps over the lazy dog.`

notation.Printlnw(s)

Output:

`The quick brown fox jumps over the lazy dog. The quick brown fox jumps over the lazy dog. The
quick brown fox jumps over the lazy dog. The quick brown fox jumps over the lazy dog. The quick brown
fox jumps over the lazy dog. The quick brown fox jumps over the lazy dog. The quick brown fox jumps
over the lazy dog. The quick brown fox jumps over the lazy dog. The quick brown fox jumps over the lazy
dog. The quick brown fox jumps over the lazy dog. The quick brown fox jumps over the lazy dog. The
quick brown fox jumps over the lazy dog.`
Arrays/Slices

Slices are are printed by printing their elements between braces, prefixed either by '[]' or the type of the slice. Example:

l := []int{1, 2, 3}
notation.Println(l)

Output:

[]{1, 2, 3}

To differentiate arrays from slices, arrays are always prefixed with their type or square brackets containing the length of the array:

a := [...]{1, 2, 3}
notation.Println(a)

Output:

[3]{1, 2, 3}
Bytes

When the type of a slice is uint8, or an alias of it, e.g. byte, then it is printed as []byte, with the hexa representation of its bytes:

b := []byte(
	`The quick brown fox jumps over the lazy dog. The quick brown fox jumps over the lazy dog. The
quick brown fox jumps over the lazy dog. The quick brown fox jumps over the lazy dog. The quick brown
fox jumps over the lazy dog. The quick brown fox jumps over the lazy dog. The quick brown fox jumps
over the lazy dog. The quick brown fox jumps over the lazy dog. The quick brown fox jumps over the lazy
dog. The quick brown fox jumps over the lazy dog. The quick brown fox jumps over the lazy dog. The
quick brown fox jumps over the lazy dog.`,
)

notation.Printlnwt(b)

Output:

[]byte{
	54 68 65 20 71 75 69 63 6b 20 62 72 6f 77 6e 20 66 6f 78 20 6a
	75 6d 70 73 20 6f 76 65 72 20 74 68 65 20 6c 61 7a 79 20 64 6f
	67 2e 20 54 68 65 20 71 75 69 63 6b 20 62 72 6f 77 6e 20 66 6f
	78 20 6a 75 6d 70 73 20 6f 76 65 72 20 74 68 65 20 6c 61 7a 79
	20 64 6f 67 2e 20 54 68 65 0a 71 75 69 63 6b 20 62 72 6f 77 6e
	20 66 6f 78 20 6a 75 6d 70 73 20 6f 76 65 72 20 74 68 65 20 6c
	61 7a 79 20 64 6f 67 2e 20 54 68 65 20 71 75 69 63 6b 20 62 72
	6f 77 6e 20 66 6f 78 20 6a 75 6d 70 73 20 6f 76 65 72 20 74 68
	65 20 6c 61 7a 79 20 64 6f 67 2e 20 54 68 65 20 71 75 69 63 6b
	20 62 72 6f 77 6e 0a 66 6f 78 20 6a 75 6d 70 73 20 6f 76 65 72
	20 74 68 65 20 6c 61 7a 79 20 64 6f 67 2e 20 54 68 65 20 71 75
	69 63 6b 20 62 72 6f 77 6e 20 66 6f 78 20 6a 75 6d 70 73 20 6f
	76 65 72 20 74 68 65 20 6c 61 7a 79 20 64 6f 67 2e 20 54 68 65
	20 71 75 69 63 6b 20 62 72 6f 77 6e 20 66 6f 78 20 6a 75 6d 70
	73 0a 6f 76 65 72 20 74 68 65 20 6c 61 7a 79 20 64 6f 67 2e 20
	54 68 65 20 71 75 69 63 6b 20 62 72 6f 77 6e 20 66 6f 78 20 6a
	75 6d 70 73 20 6f 76 65 72 20 74 68 65 20 6c 61 7a 79 20 64 6f
	67 2e 20 54 68 65 20 71 75 69 63 6b 20 62 72 6f 77 6e 20 66 6f
	78 20 6a 75 6d 70 73 20 6f 76 65 72 20 74 68 65 20 6c 61 7a 79
	0a 64 6f 67 2e 20 54 68 65 20 71 75 69 63 6b 20 62 72 6f 77 6e
	20 66 6f 78 20 6a 75 6d 70 73 20 6f 76 65 72 20 74 68 65 20 6c
	61 7a 79 20 64 6f 67 2e 20 54 68 65 20 71 75 69 63 6b 20 62 72
	6f 77 6e 20 66 6f 78 20 6a 75 6d 70 73 20 6f 76 65 72 20 74 68
	65 20 6c 61 7a 79 20 64 6f 67 2e 20 54 68 65 0a 71 75 69 63 6b
	20 62 72 6f 77 6e 20 66 6f 78 20 6a 75 6d 70 73 20 6f 76 65 72
	20 74 68 65 20 6c 61 7a 79 20 64 6f 67 2e
}
Maps

Maps are printed with their entries sorted by the string representation of their keys:

m := map[string]int{"b": 1, "c": 2, "a": 3}
notation.Println(m)

Output:

map{"a": 3, "b": 1, "c": 2}

This way a map is printed always the same way. If, for a reason, this is undesired, then this behavior can be disabled via the MAPSORT=0 environment variable.

Hidden values: channels, functions

Certain values, like channels and functions are printed without expanding their internals, e.g. channel state or function body. When printing with types, the signature of these objects is printed:

f := func(int) int { return 42 }
notation.Println(f)

Output:

func()

With types:

f := func(int) int { return 42 }
notation.Printlnt(f)

Output:

func(int) int
Wrapping

The 'w' variant of the printing functions wraps the output with Go style indentation where the lines would be too long otherwise. The wrapping is not eager, it only aims for fitting the lines on 72 columns. To measure the indentation, it assumes 8 character width tabs. In certain cases, it tolerates longer lines up to 112 columns, when the output would probably more readable that way. Of course, readability is subjective.

As a hidden feature, when it's really necessary, it is possible to change the above control values via environment variables. TABWIDTH controls the measuring of the indentation. LINEWIDTH sets the aimed column width of the printed lines. LINEWIDTH1 sets the tolerated threshold for those lines that are allowed to exceed the default line width. E.g. if somebody uses two-character wide tabs in their console, they can use the package like this:

TABWIDTH=2 go test -v -count 1

As a consequence, it is also possible to forcibly wrap all lines:

TABWIDTH=0 LINEWIDTH=0 LINEWIDTH1=0 go test -v -count 1
Types

Using the 't' or 'v' suffixed variants of the printing functions, notation prints the types together with the values. When the name of a type is available, the name is printed instead of the literal representation of the type. The package path is not printed.

Named type:

type t struct{foo int}
v := t{42}
notation.Printlnt(v)

Output:

t{foo: 42}

Unnamed type:

v := struct{foo int}{42}
notation.Printlnt(v)

Output:

struct{foo int}{foo: 42}

Using the 't' suffixed variants of the printing functions, displaying only moderately verbose type information, the types of certain values is omitted, where it can be inferred from the context:

v := []struct{foo int}{{42}, {84}}
notation.Printlnt(os.Stdout, v)

Output:

[]struct{foo int}{{foo: 42}, {foo: 84}}
Cyclic references

Cyclic references are detected based on an approach similar to the one in the stdlib's reflect.DeepEqual function. Such occurrences are displayed in the output with references:

l := []interface{}{"foo"}
l[0] = l
notation.Fprint(os.Stdout, l)

Output:

r0=[]{r0}

notation's People

Contributors

aryszka avatar kuzminadya avatar

Watchers

 avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.