GithubHelp home page GithubHelp logo

liujianzhao6328057 / dualresidualnetworks Goto Github PK

View Code? Open in Web Editor NEW

This project forked from liu-vis/dualresidualnetworks

0.0 1.0 0.0 133.93 MB

Dual Residual Networks Leveraging the Potential of Paired Operations for Image Restoration

License: MIT License

Python 100.00%

dualresidualnetworks's Introduction

Dual Residual Networks

By Xing Liu1, Masanori Suganuma1,2, Zhun Sun2, Takayuki Okatani1,2

Tohoku University1, RIKEN Center for AIP2

link to the paper

Table of Contents

  1. Abstract

  2. Citation

  3. Numerical Results

  4. Models

  5. Datasets

  6. Test

  7. Train (in preparation)

  8. Visual Results

Abstract

In this paper, we study design of deep neural networks for tasks of image restoration. We propose a novel style of residual connections dubbed “dual residual connection”, which exploits the potential of paired operations, e.g., upand down-sampling or convolution with large- and smallsize kernels. We design a modular block implementing this connection style; it is equipped with two containers to which arbitrary paired operations are inserted. Adopting the “unraveled” view of the residual networks proposed by Veit et al., we point out that a stack of the proposed modular blocks allows the first operation in a block interact with the second operation in any subsequent blocks. Specifying the two operations in each of the stacked blocks, we build a complete network for each individual task of image restoration. We experimentally evaluate the proposed approach on five image restoration tasks using nine datasets. The results show that the proposed networks with properly chosen paired operations outperform previous methods on almost all of the tasks and datasets.

Citation

@inproceedings{DuRN_cvpr19,
title={Dual Residual Networks Leveraging the Potential of Paired Operations for Image Restoration},
author={Liu, Xing and Suganuma, Masanori and Sun, Zhun and Okatani, Takayuki},
booktitle={arXiv preprint arXiv:1903.08817},
year={2019},
}

Numerical results

Please find them in the test/results_confirmed.txt file.

Models

Please find them here.

Datasets

Gaussian noise removal

  • BSD500-gray (used in our paper)
    If you also want the original BSD500, click here.

Real-world noise removal

Motion blur removal

Haze removal

Raindrop removal

Rain-streak removal

Test

Requirements

  • python 2.7
  • pytorch 0.3.1

Instructions

  1. Download and un-zip the models, and put the trainedmodels in the project folder.
  2. Download and put the datasets into the data folder. Please also set the names for a dataset and its sub-folder(s) correctly, according to the current data folder.
  3. Go to the test folder, and run the scripts.

Visual results

Gaussian noise removal

Real-world noise removal

Motion blur removal - 1

Motion blur removal - 2

Some examples for object detection

Haze removal - 1

The images are taken by iphone 6 plus

Haze removal - 2

Haze removal - 3

Compare inside-feature maps with transmission map

Raindrop removal

Rain-streak removal

dualresidualnetworks's People

Contributors

liu-vis avatar evoliu avatar

Watchers

James Cloos avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.