GithubHelp home page GithubHelp logo

liujiaxing7 / x-stereolab Goto Github PK

View Code? Open in Web Editor NEW

This project forked from smartadpole/x-stereolab

0.0 0.0 0.0 19.96 MB

SOS IROS 2018 GOOGLE; StereoNet ECCV2018 GOOGLE; ActiveStereoNet ECCV2018 Oral GOOGLE; HITNET CVPR2021 GOOGLE;PLUME Uber ATG

License: MIT License

Shell 0.30% C++ 16.69% Python 69.22% C 1.26% Cuda 12.53%

x-stereolab's Introduction

X-StereoLab is an open source stereo matching and stereo 3D object detection toolbox based on PyTorch.

News: We released the codebase v0.0.0.

  • matching and detection model result.
  • GOOGLE HITNET model pytorch model will be released.

Requirements

All the codes are tested in the following environment:

  • Ubuntu 16.04
  • Python 3.7
  • PyTorch 1.1.0 or 1.2.0 or 1.3.0
  • Torchvision 0.2.2 or 0.4.1

Installation

(1) Clone this repository.

git clone [email protected]:meteorshowers/X-StereoLab.git && cd X-StereoLab

(2) Setup Python environment.

conda activate -n xstereolab
pip install -r requirements.txt --user

## conda deactivate xstereolab

Data Preparation

(1) Please download the KITTI dataset.

ln -s /path/to/KITTI_DATA_PATH ./data/kitti/
ln -s /path/to/OUTPUT_PATH ./outputs/

Multi-GPU Training

The training scripts support multi-processing distributed training, which is much faster than the typical PyTorch DataParallel interface.

python3 tools/train_net_disp.py --cfg ./configs/config_xxx.py --savemodel ./outputs/MODEL_NAME -btrain 4 -d 0-3 --multiprocessing-distributed

The training models, configuration and logs will be saved in the model folder.

To load some pretrained model, you can run

python3 tools/train_net_disp.py --cfg xxx/config.py --loadmodel ./outputs/MODEL_NAMEx --start_epoch xxx --savemodel ./outputs/MODEL_NAME -btrain 4 -d 0-3 --multiprocessing-distributed

If you want to continue training from some epochs, just set the cfg, loadmodel and start_epoch to the respective model path.

Besides, you can start a tensorboard session by

tensorboard --logdir=./outputs/MODEL_NAME/tensorboard --port=6666

and visualize your training process by accessing https://localhost:6666 on your browser.

Inference and Evaluation

on working ...

stereo matching Performance and Model Zoo

</tbody>
Methods Epochs Train Mem (GB/Img) Test Mem (GB/Img) EPE D1-all Models
HITNET (kitti) 4200 2.43% GoogleDrive
HITNET (sceneflow) 200 0.65 GoogleDrive
stereonet (sceneflow) 20 1.10 GoogleDrive
ActiveStereoNet 10 GoogleDrive
SOS

stereo 3D detection Performance and Model Zoo

PLUME: Efficient 3D Object Detection from Stereo Images

Methods Epochs Train Mem (GB/Img) Test Mem (GB/Img) 3D BEV AP (Ours small plume) 3D BEV AP (Paper small plume)
PLUME 72.9 / 62.5 / 56.9 74.4 / 61.7 / 55.8

Video Demo

We provide a video demo for showing the result of X-StereoLab. Here we show the predicted disparity map of activastereonet.

TODO List

  • Multiprocessing GPU training
  • TensorboardX
  • Reduce training GPU memory usage
  • eval and test code
  • Result visualization
  • Still in progress

Citations

If you find our work useful in your research, please consider citing:

@misc{XStereoLab2021,
    title={{X-StereoLab} stereo matching and stereo 3D object detection toolbox},
    author={X-StereoLab Contributors},
    howpublished = {\url{https://github.com/meteorshowers/X-StereoLab}},
    year={2021}
}
* refercence[2] 
@article{tankovich2020hitnet,
  title={HITNet: Hierarchical Iterative Tile Refinement Network for Real-time Stereo Matching},
  author={Tankovich, Vladimir and H{\"a}ne, Christian and Fanello, Sean and Zhang, Yinda and Izadi, Shahram and Bouaziz, Sofien},
  journal={arXiv preprint arXiv:2007.12140},
  year={2020}
}

* refercence[3] 
@inproceedings{tankovich2018sos,
  title={Sos: Stereo matching in o (1) with slanted support windows},
  author={Tankovich, Vladimir and Schoenberg, Michael and Fanello, Sean Ryan and Kowdle, Adarsh and Rhemann, Christoph and Dzitsiuk, Maksym and Schmidt, Mirko and Valentin, Julien and Izadi, Shahram},
  booktitle={2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)},
  pages={6782--6789},
  year={2018},
  organization={IEEE}
}

Others contributors

pic
vtankovich

GOOGLE

pic
Yan Wang

Waymo

Acknowledgment

License

The code is released under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International Public License for NonCommercial use only. Any commercial use should get formal permission first.

Contact

If you have any questions or suggestions about this repo, please feel free to contact me ([email protected]). Wechat:

pic
XUANYILI

x-stereolab's People

Contributors

meteorshowers avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.