GithubHelp home page GithubHelp logo

blog's Introduction

Winty's blog

-- 帮到你的话请点 star,想订阅点 watch

欢迎关注公众号 前端 Q 一起学习成长~~

GitHub

云相关

WebAssembly

|生活&前端感悟

|知识体系

| Webpack

| 原理探索

| Node

| 实践技巧

| 框架

| 数据结构与算法

| 调研

| 性能

| 好文收集

服务端相关

| 设计模式

| 其他

| 翻译

| 面试

每周 N 题
浏览器与网络
安全
其他

js

| 最后

  • 欢迎加我微信(winty230),拉你进技术群,长期交流学习...
  • 欢迎关注「前端 Q」,认真学前端,做个有专业的技术人...

GitHub

blog's People

Contributors

luckywinty avatar

Stargazers

 avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar

Watchers

 avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar

blog's Issues

你应该避免的3个Javascript性能错误

如果我告诉你,你知道的一切都是假的,如果你学的一些近几年发布的深受喜爱的 ECMAScript 的主要特性,是很容易导致性能问题的,会发生什么。

故事发生在几年前,让我们回到 ES5 的天真时代...

我深深地记得 ES5 发布的那天,我们喜爱的 Javascript 引入了一些优秀的数组方法,它们是 forEach, reduce, map, filter——这些方法让我们感受到语言不断发展,功能越来越强大,写代码变得更有趣和流畅,代码变得更通俗易懂。

几乎同时,诞生了 Node.js ,它使得我们能平稳地从前端过渡到后端,同时真正重新定义了全栈开发。

现在,Node.js ,在 V8 引擎上使用最新的 ECMAScript ,争取被认为是主流的服务端开发语言之一。因此,它需要证明在性能方面是高效的。当然,有很多性能参数需要考虑,没有某种语言的性能可以所有参数都优于其他语言。但是,用开箱即用的方法如上面提到的函数写 javascript 对你的应用性能的影响到底是有利还是有害呢?

此外 ,javascript不仅仅是为了展示视图而被认为是客户端开发的合理方案,因为用户的电脑性能会变得更好,网络会更快,但是当我们需要一个超高性能的应用或者非常复杂的应用时,我们能依赖用户的电脑吗?

为了测试这些问题,我尝试比较几个场景并深入理解我的实验结果,我在 Node.js v10.11.0、Chrome浏览器、macOS上做的测试。

1.遍历数组

我做的第一个场景是对一个 10万条数据的数组求和。这是现实中一个有效的方法,我从数据库中获取了一个列表并求和,没有额外的 DB 操作。

我用 for , for-of, while, forEach, reduce 比较了在随机的 10万条数据中求和,结果如下:

    For Loop, average loop time: ~10 microseconds
    For-Of, average loop time: ~110 microseconds
    ForEach, average loop time: ~77 microseconds
    While, average loop time: ~11 microseconds
    Reduce, average loop time: ~113 microseconds

从 google 上查如何做数组求和时,reduce 是推荐的最好的实现方式,但是却是性能最差的。我的必用方法 forEach 性能也不是很好。即使是最新的 ES6 方法 for-of ,只是提供了最差的性能方法。它比旧的 for 循环方法(也是性能最好的方法)差了 10 倍。

最新的和最推荐的方法怎么可以使得 Javascript 变得如此慢,造成这个的原因主要有 2 个。reduce 和 forEach 需要一个执行一个回调函数,这个函数被递归调用并使堆栈"膨胀",以及对执行代码进行附加操作和验证。

2.复制数组

复制数组看起来不是一个有趣的场景,但这是不可变函数的基石,它在生成输出时不会修改输入。

性能测试同样出现了有意思的结果——当复制 10 万条随机数据时,用老方法还是比新方法快。用 ES6 的扩展运算操作 [...arr] 和 Array.from, 加上 ES5 的 map 方法,arr.map(x=>x) 性能都不如老方法 arr.slice() 和 连接方法 [].concat(arr)

    Duplicate using Slice, average: ~367 microseconds
    Duplicate using Map, average: ~469 microseconds
    Duplicate using Spread, average: ~512 microseconds
    Duplicate using Conct, average: ~366 microseconds
    Duplicate using Array From, average: ~1,436 microseconds
    Duplicate manually, average: ~412 microseconds

3.对象迭代

另一个经常遇到的场景就是对象迭代,通常就是我们不能根据特定的 key取值,而必须遍历 JSON 结构 或者 Object。我们有老方法 for-in (for(let key in obj)),也有新方法 Object.keys(obj) 和 Object.entries(obj)。

我们用上述方法,对 10 万个对象,每个对象都包含 1000 个随机的 keys 和 values 进行性能分析。结果如下:

    Object iterate For-In, average: ~240 microseconds
    Object iterate Keys For Each, average: ~294 microseconds
    Object iterate Entries For-Of, average: ~535 microseconds

出现这样结果的原因是,后两种方案创建了可枚举的数值组,而不是在没有 keys 的情况下直接遍历数组。但是最终的结果仍然值得关注。

结论

我的结论显而易见——如果性能对你的应用很关键,或者你的服务需要处理一些过载,那么使用酷的,可读性更高的,更简洁的方法会对你的应用产生重大的性能影响——可能会慢 10 倍!

之后,在盲目跟随新趋势之前,先确保这些新方法是否满足需求,对于小应用,快速迭代和用高可读性对代码是完美的,但是对于压力大的服务器和庞大的客户端应用,可能不是最佳实践。

原文:https://hackernoon.com/3-javascript-performance-mistakes-you-should-stop-doing-ebf84b9de951

Tree-shaking之模块输出

Tree-Shaking,它代表的大意就是删除没用到的代码。这样的功能对于构建大型应用时是非常好的,因为日常开发经常需要引用各种库。但大多时候仅仅使用了这些库的某些部分,并非需要全部,此时Tree-Shaking如果能帮助我们删除掉没有使用的代码,将会大大缩减打包后的代码量。

Tree-Shaking的原理,通过静态分析,找出未被引用、未被执行、无法到达的代码进行消除,也就是DCE(dead code elimination)。要做到这一点,就必须保证模块依赖关系是确定的,和运行时的状态无关,而现在前端环境下,能做到这样的,就是ES6 modules 。

ES6 module 特点:

  • 只能作为模块顶层的语句出现
  • import 的模块名只能是字符串常量
  • import binding 是 immutable的

再看现有的打包工具,webpack似乎占领了"江湖"。于是自然想到,首先webpack作为打包工具,但是在定义模块输出的时候,webpack确不支持ESM。webpack目前支持的格式如下:out.libraryTarget属性取值分别为:

  1. var - 默认值
  2. assign
  3. this
  4. window
  5. global
  6. commonjs
  7. commonjs2
  8. amd
  9. umd
  10. jsonp

这就很鸡肋了...所以写类库的时候,要导出esm的话,无法用webpack编译。webpack插件系统庞大,确实有支持模块级的Tree-Shacking的插件,如webpack-deep-scope-analysis-plugin。但是粒度更细化的,一个模块里面的某个方法,没有被引用的也可以去掉的,就不行了....这个时候,就要上rollup了。 明显的2大特性:

  1. 它支持导出ES模块的包。
  2. 它支持程序流分析,能更加正确的判断项目本身的代码是否有副作用。

结论:
rollup 采用 es6 原生的模块机制进行模块的打包构建,rollup 更着眼于未来,对 commonjs 模块机制不提供内置的支持,是一款更轻量的打包工具。rollup 比较适合打包 js 的 sdk 或者封装的框架等,例如,vue 源码就是 rollup 打包的。而 webpack 比较适合打包一些应用,例如 SPA 或者同构项目等等。

Promise链式调用原理

Promise 必须为以下三种状态之一:等待态(Pending)、执行态(Fulfilled)和拒绝态(Rejected)。一旦Promise 被 resolve 或 reject,不能再迁移至其他任何状态(即状态 immutable)。

基本过程:

  1. 初始化 Promise 状态(pending)
  2. 立即执行 Promise 中传入的 fn 函数,将Promise 内部 resolve、reject 函数作为参数传递给 fn ,按事件机制时机处理
  3. 执行 then(..) 注册回调处理数组(then 方法可被同一个 promise 调用多次)
  4. Promise里的关键是要保证,then方法传入的参数 onFulfilled 和 onRejected,必须在then方法被调用的那一轮事件循环之后的新执行栈中执行。

真正的链式Promise是指在当前promise达到fulfilled状态后,即开始进行下一个promise.

链式调用

先从 Promise 执行结果看一下,有如下一段代码:

    new Promise((resolve, reject) => {
        setTimeout(() => {
            resolve({ test: 1 })
            resolve({ test: 2 })
            reject({ test: 2 })
        }, 1000)
    }).then((data) => {
        console.log('result1', data)
    },(data1)=>{
        console.log('result2',data1)
    }).then((data) => {
        console.log('result3', data)
    })
    //result1 { test: 1 }
    //result3 undefined

显然这里输出了不同的 data。由此可以看出几点:

  1. 可进行链式调用,且每次 then 返回了新的 Promise(2次打印结果不一致,如果是同一个实例,打印结果应该一致。
  2. 只输出第一次 resolve 的内容,reject 的内容没有输出,即 Promise 是有状态且状态只可以由pending -> fulfilled或 pending-> rejected,是不可逆的。
  3. then 中返回了新的 Promise,但是then中注册的回调仍然是属于上一个 Promise 的。

基于以上几点,我们先写个基于 PromiseA+ 规范的只含 resolve 方法的 Promise 模型:

    function Promise(fn){ 
        let state = 'pending';
        let value = null;
        const callbacks = [];

        this.then = function (onFulfilled){
            return new Promise((resolve, reject)=>{
                handle({ //桥梁,将新 Promise 的 resolve 方法,放到前一个 promise 的回调对象中
                    onFulfilled, 
                    resolve
                })
            })
        }

        function handle(callback){
            if(state === 'pending'){
                callbacks.push(callback)
                return;
            }
            
            if(state === 'fulfilled'){
                if(!callback.onFulfilled){
                    callback.resolve(value)
                    return;
                }
                const ret = callback.onFulfilled(value) //处理回调
                callback.resolve(ret) //处理下一个 promise 的resolve
            }
        }
        function resolve(newValue){
            const fn = ()=>{
                if(state !== 'pending')return

                state = 'fulfilled';
                value = newValue
                handelCb()
            }
            
            setTimeout(fn,0) //基于 PromiseA+ 规范
        }
        
        function handelCb(){
            while(callbacks.length) {
                const fulfiledFn = callbacks.shift();
                handle(fulfiledFn);
            };
        }
        
        fn(resolve)
    }

这个模型简单易懂,这里最关键的点就是在 then 中新创建的 Promise,它的状态变为 fulfilled 的节点是在上一个 Promise的回调执行完毕的时候。也就是说当一个 Promise 的状态被 fulfilled 之后,会执行其回调函数,而回调函数返回的结果会被当作 value,返回给下一个 Promise(也就是then 中产生的 Promise),同时下一个 Promise的状态也会被改变(执行 resolve 或 reject),然后再去执行其回调,以此类推下去...链式调用的效应就出来了。

但是如果仅仅是例子中的情况,我们可以这样写:

    new Promise((resolve, reject) => {
        setTimeout(() => {
            resolve({ test: 1 })
        }, 1000)
    }).then((data) => {
        console.log('result1', data)
        //dosomething
        console.log('result3')
    })
    //result1 { test: 1 }
    //result3

实际上,我们常用的链式调用,是用在异步回调中,以解决"回调地狱"的问题。如下例子:

new Promise((resolve, reject) => {
  setTimeout(() => {
    resolve({ test: 1 })
  }, 1000)
}).then((data) => {
  console.log('result1', data)
  //dosomething
  return test()
}).then((data) => {
  console.log('result2', data)
})

function test(id) {
  return new Promise(((resolve) => {
    setTimeout(() => {
      resolve({ test: 2 })
    }, 5000)
  }))
}
//基于第一个 Promise 模型,执行后的输出
//result1 { test: 1 }
//result2 Promise {then: ƒ}

用上面的 Promise 模型,得到的结果显然不是我们想要的。认真看上面的模型,执行 callback.resolve 时,传入的参数是 callback.onFulfilled 执行完成的返回,显然这个测试例子返回的就是一个 Promise,而我们的 Promise 模型中的 resolve 方法并没有特殊处理。那么我们将 resolve 改一下:

    function Promise(fn){ 
        ...
        function resolve(newValue){
            const fn = ()=>{
                if(state !== 'pending')return

                if(newValue && (typeof newValue === 'object' || typeof newValue === 'function')){
                    const {then} = newValue
                    if(typeof then === 'function'){
                        // newValue 为新产生的 Promise,此时resolve为上个 promise 的resolve
                        //相当于调用了新产生 Promise 的then方法,注入了上个 promise 的resolve 为其回调
                        then.call(newValue,resolve)
                        return
                    }
                }
                state = 'fulfilled';
                value = newValue
                handelCb()
            }
            
            setTimeout(fn,0)
        }
        ...
    }

用这个模型,再测试我们的例子,就得到了正确的结果:

    new Promise((resolve, reject) => {
        setTimeout(() => {
            resolve({ test: 1 })
        }, 1000)
    }).then((data) => {
        console.log('result1', data)
        //dosomething
        return test()
    }).then((data) => {
        console.log('result2', data)
    })

    function test(id) {
        return new Promise(((resolve, reject) => {
            setTimeout(() => {
            resolve({ test: 2 })
            }, 5000)
        }))
    }
    //result1 { test: 1 }
    //result2 { test: 2 }

显然,新增的逻辑就是针对 resolve 入参为 Promise 的时候的处理。我们观察一下 test 里面创建的 Promise,它是没有调用 then方法的。从上面的分析我们已经知道 Promise 的回调函数就是通过调用其 then 方法注册的,因此 test 里面创建的 Promise 其回调函数为空。

显然如果没有回调函数,执行 resolve 的时候,是没办法链式下去的。因此,我们需要主动为其注入回调函数。

我们只要把第一个 then 中产生的 Promise 的 resolve 函数的执行,延迟到 test 里面的 Promise 的状态为 onFulfilled 的时候再执行,那么链式就可以继续了。所以,当 resolve 入参为 Promise 的时候,调用其 then 方法为其注入回调函数,而注入的是前一个 Promise 的 resolve 方法,所以要用 call 来绑定 this 的指向。

基于新的 Promise 模型,上面的执行过程产生的 Promise 实例及其回调函数,可以用看下表:

Promise callback
P1 [{onFulfilled:c1(第一个then中的fn),resolve:p2resolve}]
P2 (P1 调用 then 时产生) [{onFulfilled:c2(第二个then中的fn),resolve:p3resolve}]
P3 (P2 调用 then 时产生) []
P4 (执行c1中产生[调用 test ]) [{onFulfilled:p2resolve,resolve:p5resolve}]
P5 (调用p2resolve 时,进入 then.call 逻辑中产生) []

有了这个表格,我们就可以清晰知道各个实例中 callback 执行的顺序是:

c1 -> p2resolve -> c2 -> p3resolve -> [] -> p5resolve -> []

以上就是链式调用的原理了。

reject

下面我们再来补全 reject 的逻辑。只需要在注册回调、状态改变时加上 reject 的逻辑即可。

完整代码如下:

    function Promise(fn){ 
        let state = 'pending';
        let value = null;
        const callbacks = [];

        this.then = function (onFulfilled,onRejected){
            return new Promise((resolve, reject)=>{
                handle({
                    onFulfilled, 
                    onRejected,
                    resolve, 
                    reject
                })
            })
        }

        function handle(callback){
            if(state === 'pending'){
                callbacks.push(callback)
                return;
            }
            
            const cb = state === 'fulfilled' ? callback.onFulfilled:callback.onRejected;
            const next = state === 'fulfilled'? callback.resolve:callback.reject;

            if(!cb){
                next(value)
                return;
            }
            const ret = cb(value)
            next(ret)
        }
        function resolve(newValue){
            const fn = ()=>{
                if(state !== 'pending')return

                if(newValue && (typeof newValue === 'object' || typeof newValue === 'function')){
                    const {then} = newValue
                    if(typeof then === 'function'){
                        // newValue 为新产生的 Promise,此时resolve为上个 promise 的resolve
                        //相当于调用了新产生 Promise 的then方法,注入了上个 promise 的resolve 为其回调
                        then.call(newValue,resolve, reject)
                        return
                    }
                }
                state = 'fulfilled';
                value = newValue
                handelCb()
            }
            
            setTimeout(fn,0)
        }
        function reject(error){

            const fn = ()=>{
                if(state !== 'pending')return

                if(error && (typeof error === 'object' || typeof error === 'function')){
                    const {then} = error
                    if(typeof then === 'function'){
                        then.call(error,resolve, reject)
                        return
                    }
                }
                state = 'rejected';
                value = error
                handelCb()
            }
            setTimeout(fn,0)
        }
        function handelCb(){
            while(callbacks.length) {
                const fn = callbacks.shift();
                handle(fn);
            };
        }
        fn(resolve, reject)
    }

异常处理

异常通常是指在执行成功/失败回调时代码出错产生的错误,对于这类异常,我们使用 try-catch 来捕获错误,并将 Promise 设为 rejected 状态即可。

handle代码改造如下:

    function handle(callback){
        if(state === 'pending'){
            callbacks.push(callback)
            return;
        }
        
        const cb = state === 'fulfilled' ? callback.onFulfilled:callback.onRejected;
        const next = state === 'fulfilled'? callback.resolve:callback.reject;

        if(!cb){
            next(value)
            return;
        }
        try {
            const ret = cb(value)
            next(ret)
        } catch (e) {
            callback.reject(e);
        }  
    }

我们实际使用时,常习惯注册 catch 方法来处理错误,例:

    new Promise((resolve, reject) => {
        setTimeout(() => {
            resolve({ test: 1 })
        }, 1000)
    }).then((data) => {
        console.log('result1', data)
        //dosomething
        return test()
    }).catch((ex) => {
        console.log('error', ex)
    })

实际上,错误也好,异常也罢,最终都是通过reject实现的。也就是说可以通过 then 中的错误回调来处理。所以我们可以增加这样的一个 catch 方法:

    function Promise(fn){ 
        ...
        this.then = function (onFulfilled,onRejected){
            return new Promise((resolve, reject)=>{
                handle({
                    onFulfilled, 
                    onRejected,
                    resolve, 
                    reject
                })
            })
        }
        this.catch = function (onError){
            this.then(null,onError)
        }
        ...
    }

Finally方法

在实际应用的时候,我们很容易会碰到这样的场景,不管Promise最后的状态如何,都要执行一些最后的操作。我们把这些操作放到 finally 中,也就是说 finally 注册的函数是与 Promise 的状态无关的,不依赖 Promise 的执行结果。所以我们可以这样写 finally 的逻辑:

    function Promise(fn){ 
        ...
        this.catch = function (onError){
            this.then(null,onError)
        }
        this.finally = function (onDone){
            this.then(onDone,onDone)
        }
        ...
    }

resolve 方法和 reject 方法

实际应用中,我们可以使用 Promise.resolve 和 Promise.reject 方法,用于将于将非 Promise 实例包装为 Promise 实例。如下例子:

Promise.resolve({name:'winty'})
Promise.reject({name:'winty'})
// 等价于
new Promise(resolve => resolve({name:'winty'}))
new Promise((resolve,reject) => reject({name:'winty'}))

这些情况下,Promise.resolve 的入参可能有以下几种情况:

  • 无参数 [直接返回一个resolved状态的 Promise 对象]
  • 普通数据对象 [直接返回一个resolved状态的 Promise 对象]
  • 一个Promise实例 [直接返回当前实例]
  • 一个thenable对象(thenable对象指的是具有then方法的对象) [转为 Promise 对象,并立即执行thenable对象的then方法。]

基于以上几点,我们可以实现一个 Promise.resolve 方法如下:

    function Promise(fn){ 
        ...
        this.resolve = function (value){
            if (value && value instanceof Promise) {
                return value;
            } else if (value && typeof value === 'object' && typeof value.then === 'function'){
                let then = value.then;
                return new Promise(resolve => {
                    then(resolve);
                });
            } else if (value) {
                return new Promise(resolve => resolve(value));
            } else {
                return new Promise(resolve => resolve());
            }
        }
        ...
    }

Promise.reject与Promise.resolve类似,区别在于Promise.reject始终返回一个状态的rejected的Promise实例,而Promise.resolve的参数如果是一个Promise实例的话,返回的是参数对应的Promise实例,所以状态不一 定。
因此,reject 的实现就简单多了,如下:

    function Promise(fn){ 
        ...
        this.reject = function (value){
            return new Promise(function(resolve, reject) {
				reject(value);
			});
        }
        ...
    }

Promise.all

入参是一个 Promise 的实例数组,然后注册一个 then 方法,然后是数组中的 Promise 实例的状态都转为 fulfilled 之后则执行 then 方法。这里主要就是一个计数逻辑,每当一个 Promise 的状态变为 fulfilled 之后就保存该实例返回的数据,然后将计数减一,当计数器变为 0 时,代表数组中所有 Promise 实例都执行完毕。

    function Promise(fn){ 
        ...
        this.all = function (arr){
            var args = Array.prototype.slice.call(arr);
            return new Promise(function(resolve, reject) {
                if(args.length === 0) return resolve([]);
                var remaining = args.length;

                function res(i, val) {
                    try {
                        if(val && (typeof val === 'object' || typeof val === 'function')) {
                            var then = val.then;
                            if(typeof then === 'function') {
                                then.call(val, function(val) {
                                    res(i, val);
                                }, reject);
                                return;
                            }
                        }
                        args[i] = val;
                        if(--remaining === 0) {
                            resolve(args);
                        }
                    } catch(ex) {
                        reject(ex);
                    }
                }
                for(var i = 0; i < args.length; i++) {
                    res(i, args[i]);
                }
            });
        }
        ...
    }

Promise.race

有了 Promise.all 的理解,Promise.race 理解起来就更容易了。它的入参也是一个 Promise 实例数组,然后其 then 注册的回调方法是数组中的某一个 Promise 的状态变为 fulfilled 的时候就执行。因为 Promise 的状态只能改变一次,那么我们只需要把 Promise.race 中产生的 Promise 对象的 resolve 方法,注入到数组中的每一个 Promise 实例中的回调函数中即可。

function Promise(fn){ 
    ...
    this.race = function(values) {
        return new Promise(function(resolve, reject) {
            for(var i = 0, len = values.length; i < len; i++) {
                values[i].then(resolve, reject);
            }
        });
    }
    ...
    }  

总结

Promise 源码不过几百行,我们可以从执行结果出发,分析每一步的执行过程,然后思考其作用即可。其中最关键的点就是要理解 then 函数是负责注册回调的,真正的执行是在 Promise 的状态被改变之后。而当 resolve 的入参是一个 Promise 时,要想链式调用起来,就必须调用其 then 方法(then.call),将上一个 Promise 的 resolve 方法注入其回调数组中。

补充说明

虽然 then 普遍认为是微任务。但是浏览器没办法模拟微任务,目前要么用 setImmediate ,这个也是宏任务,且不兼容的情况下还是用 setTimeout 打底的。还有,promise 的 polyfill (es6-promise) 里用的也是 setTimeout。因此这里就直接用 setTimeout,以宏任务来代替微任务了。

参考资料

完整 Promise 模型

function Promise(fn) {
  let state = 'pending'
  let value = null
  const callbacks = []

  this.then = function (onFulfilled, onRejected) {
    return new Promise((resolve, reject) => {
      handle({
        onFulfilled,
        onRejected,
        resolve,
        reject,
      })
    })
  }

  this.catch = function (onError) {
    return this.then(null, onError)
  }

  this.finally = function (onDone) {
    this.then(onDone, onError)
  }

  this.resolve = function (value) {
    if (value && value instanceof Promise) {
      return value
    } if (value && typeof value === 'object' && typeof value.then === 'function') {
      const { then } = value
      return new Promise((resolve) => {
        then(resolve)
      })
    } if (value) {
      return new Promise(resolve => resolve(value))
    }
    return new Promise(resolve => resolve())
  }

  this.reject = function (value) {
    return new Promise(((resolve, reject) => {
      reject(value)
    }))
  }

  this.all = function (arr) {
    const args = Array.prototype.slice.call(arr)
    return new Promise(((resolve, reject) => {
      if (args.length === 0) return resolve([])
      let remaining = args.length

      function res(i, val) {
        try {
          if (val && (typeof val === 'object' || typeof val === 'function')) {
            const { then } = val
            if (typeof then === 'function') {
              then.call(val, (val) => {
                res(i, val)
              }, reject)
              return
            }
          }
          args[i] = val
          if (--remaining === 0) {
            resolve(args)
          }
        } catch (ex) {
          reject(ex)
        }
      }
      for (let i = 0; i < args.length; i++) {
        res(i, args[i])
      }
    }))
  }

  this.race = function (values) {
    return new Promise(((resolve, reject) => {
      for (let i = 0, len = values.length; i < len; i++) {
        values[i].then(resolve, reject)
      }
    }))
  }

  function handle(callback) {
    if (state === 'pending') {
      callbacks.push(callback)
      return
    }

    const cb = state === 'fulfilled' ? callback.onFulfilled : callback.onRejected
    const next = state === 'fulfilled' ? callback.resolve : callback.reject

    if (!cb) {
      next(value)
      return
    }	
    let ret;
    try {
     ret = cb(value)
    } catch (e) {
      callback.reject(e)
    }
	callback.resolve(ret);
  }
  function resolve(newValue) {
    const fn = () => {
      if (state !== 'pending') return

      if (newValue && (typeof newValue === 'object' || typeof newValue === 'function')) {
        const { then } = newValue
        if (typeof then === 'function') {
          // newValue 为新产生的 Promise,此时resolve为上个 promise 的resolve
          // 相当于调用了新产生 Promise 的then方法,注入了上个 promise 的resolve 为其回调
          then.call(newValue, resolve, reject)
          return
        }
      }
      state = 'fulfilled'
      value = newValue
      handelCb()
    }

    setTimeout(fn, 0)
  }
  function reject(error) {
    const fn = () => {
      if (state !== 'pending') return

      if (error && (typeof error === 'object' || typeof error === 'function')) {
        const { then } = error
        if (typeof then === 'function') {
          then.call(error, resolve, reject)
          return
        }
      }
      state = 'rejected'
      value = error
      handelCb()
    }
    setTimeout(fn, 0)
  }
  function handelCb() {
    while (callbacks.length) {
      const fn = callbacks.shift()
      handle(fn)
    }
  }
  try {
  fn(resolve, reject)
  } catch(ex) {
	reject(ex);
  }
}

最后

觉得内容有帮助可以关注下我的公众号 「前端Q」,一起学习成长~~
GitHub

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.