GithubHelp home page GithubHelp logo

manojvenaram / convolutional-denoising-autoencoder Goto Github PK

View Code? Open in Web Editor NEW

This project forked from obedotto/convolutional-denoising-autoencoder

0.0 0.0 0.0 152 KB

Jupyter Notebook 100.00%

convolutional-denoising-autoencoder's Introduction

Convolutional Autoencoder for Image Denoising

AIM:

To develop a convolutional autoencoder for image denoising application.

Problem Statement and Dataset:

Autoencoder is an unsupervised artificial neural network that is trained to copy its input to output. An autoencoder will first encode the image into a lower-dimensional representation, then decodes the representation back to the image.The goal of an autoencoder is to get an output that is identical to the input. Autoencoders uses MaxPooling, convolutional and upsampling layers to denoise the image. We are using MNIST Dataset for this experiment. The MNIST dataset is a collection of handwritten digits. The task is to classify a given image of a handwritten digit into one of 10 classes representing integer values from 0 to 9, inclusively. The dataset has a collection of 60,000 handwrittend digits of size 28 X 28. Here we build a convolutional neural network model that is able to classify to it's appropriate numerical value. 201967502-00818ac7-4523-46e2-a3be-659758793752

Convolution Autoencoder Network Model:

image

DESIGN STEPS

  1. Import the necessary libraries and dataset.

  2. Load the dataset and scale the values for easier computation.

  3. Add noise to the images randomly for both the train and test sets.

  4. Build the Neural Model using

  • Convolutional Layer
  • Pooling Layer
  • Up Sampling Layer. Make sure the input shape and output shape of the model are identical.
  1. Pass test data for validating manually.

  2. Plot the predictions for visualization.

PROGRAM

Import necessary libraries:

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

from tensorflow import keras
from tensorflow.keras import layers, utils, models
from tensorflow.keras.datasets import mnist

Read the dataset and scale it:

(x_train, _), (x_test, _) = mnist.load_data()

x_train.shape

x_train_scaled = x_train.astype('float32') / 255.
x_test_scaled = x_test.astype('float32') / 255.

x_train_scaled = np.reshape(x_train_scaled, (len(x_train_scaled), 28, 28, 1))
x_test_scaled = np.reshape(x_test_scaled, (len(x_test_scaled), 28, 28, 1))

Add noise to image:

noise_factor = 0.5
x_train_noisy = x_train_scaled + noise_factor * np.random.normal(loc=0.0, scale=1.0, size=x_train_scaled.shape)
x_test_noisy = x_test_scaled + noise_factor * np.random.normal(loc=0.0, scale=1.0, size=x_test_scaled.shape)

x_train_noisy = np.clip(x_train_noisy, 0., 1.)
x_test_noisy = np.clip(x_test_noisy, 0., 1.)

Plot the images:

n = 10
plt.figure(figsize=(20, 2))
for i in range(1, n + 1):
    ax = plt.subplot(1, n, i)
    plt.imshow(x_test_noisy[i].reshape(28, 28))
    plt.gray()
    ax.get_xaxis().set_visible(False)
    ax.get_yaxis().set_visible(False)
plt.show()

Develop an Autoencoder DL Model

input_img = keras.Input(shape=(28, 28, 1))

x=layers.Conv2D(16,(5,5),activation='relu',padding='same')(input_img)
x=layers.MaxPooling2D((2,2),padding='same')(x)
x=layers.Conv2D(4,(3,3),activation='relu',padding='same')(x)
x=layers.MaxPooling2D((2,2),padding='same')(x)
x=layers.Conv2D(4,(3,3),activation='relu',padding='same')(x)
x=layers.MaxPooling2D((2,2),padding='same')(x)
x=layers.Conv2D(8,(7,7),activation='relu',padding='same')(x)
encoded = layers.MaxPooling2D((2, 2), padding='same')(x)

x=layers.Conv2D(4,(3,3),activation='relu',padding='same')(encoded)
x=layers.UpSampling2D((2,2))(x)
x=layers.Conv2D(4,(3,3),activation='relu',padding='same')(x)
x=layers.UpSampling2D((2,2))(x)
x=layers.Conv2D(8,(5,5),activation='relu',padding='same')(x)
x=layers.UpSampling2D((2,2))(x)
x=layers.Conv2D(16,(5,5),activation='relu',padding='same')(x)
x=layers.UpSampling2D((2,2))(x)
x=layers.Conv2D(16,(5,5),activation='relu')(x)
x=layers.UpSampling2D((1,1))(x)
decoded = layers.Conv2D(1, (3, 3), activation='sigmoid', padding='same')(x)

autoencoder = keras.Model(input_img, decoded)

autoencoder.summary()

Compile and Fit the model:

autoencoder.compile(optimizer='adam', loss='binary_crossentropy')

autoencoder.fit(x_train_noisy, x_train_scaled,
                epochs=3,
                batch_size=256,
                shuffle=True,
                validation_data=(x_test_noisy, x_test_scaled))

Plot Metrics Graph:

metrics = pd.DataFrame(autoencoder.history.history)
metrics[['loss','val_loss']].plot()

Predict Using the model:

decoded_imgs = autoencoder.predict(x_test_noisy)

Plot the original, noisy & reconstructed images:

n = 10
plt.figure(figsize=(20, 4))
for i in range(1, n + 1):
    # Display original
    ax = plt.subplot(3, n, i)
    plt.imshow(x_test_scaled[i].reshape(28, 28))
    plt.gray()
    ax.get_xaxis().set_visible(False)
    ax.get_yaxis().set_visible(False)

    # Display noisy
    ax = plt.subplot(3, n, i+n)
    plt.imshow(x_test_noisy[i].reshape(28, 28))
    plt.gray()
    ax.get_xaxis().set_visible(False)
    ax.get_yaxis().set_visible(False)    

    # Display reconstruction
    ax = plt.subplot(3, n, i + 2*n)
    plt.imshow(decoded_imgs[i].reshape(28, 28))
    plt.gray()
    ax.get_xaxis().set_visible(False)
    ax.get_yaxis().set_visible(False)
plt.show()

OUTPUT

Training Loss, Validation Loss Vs Iteration Plot:

image

Original vs Noisy Vs Reconstructed Image:

image

RESULT

Thus we have successfully developed a convolutional autoencoder for image denoising application.

convolutional-denoising-autoencoder's People

Contributors

manojvenaram avatar obedotto avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.