GithubHelp home page GithubHelp logo

manojvenaram / named-entity-recognition Goto Github PK

View Code? Open in Web Editor NEW

This project forked from obedotto/named-entity-recognition

0.0 0.0 0.0 519 KB

License: BSD 3-Clause "New" or "Revised" License

Jupyter Notebook 100.00%

named-entity-recognition's Introduction

Named Entity Recognition

AIM

To develop an LSTM-based model for recognizing the named entities in the text.

Problem Statement and Dataset

In this experiment, bidirectional recurrent neural networks are used to construct an LSTM-based neural network model for named entity recognition. Each sentence in the dataset has a large number of terms and their accompanying tags. We vectorize these sentences using Embedding techniques to train our model.Recurrent neural networks that function in both directions can combine the outputs of two hidden layers. This kind of generative deep learning allows the output layer to receive input from both past and future states concurrently.

DESIGN STEPS

STEP 1:

Import the required packages

STEP 2:

Import the dataset

STEP 3:

Check for the empty values and fill the null values accordingly

STEP 4:

Get the count of the unique words in the given dataset

STEP5:

Create the list of words and tags

STEP 6:

Make the index for words and tags

STEP 7:

Assign the values of x and y

STEP 8:

create , compile and fit the dataset

STEP 9:

Make prediction with sample text

PROGRAM

Developed by: Manoj Choudhary V
Reg no: 212221240025

Importing the required packages

import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
from tensorflow.keras.preprocessing import sequence
from sklearn.model_selection import train_test_split
from keras import layers
from keras.models import Model

Importing the dataset

data = pd.read_csv("ner_dataset.csv", encoding="latin1")

Filling the null values with previous values

data = data.fillna(method="ffill")

Getting the count of unique words

print("Unique words in corpus:", data['Word'].nunique())
print("Unique tags in corpus:", data['Tag'].nunique())

creating the lists


words=list(data['Word'].unique())
words.append("ENDPAD")
tags=list(data['Tag'].unique())

Printing the unique tags

print("Unique tags are:", tags)

Creating the sentencegetter class

class SentenceGetter(object):
    def __init__(self, data):
        self.n_sent = 1
        self.data = data
        self.empty = False
        agg_func = lambda s: [(w, p, t) for w, p, t in zip(s["Word"].values.tolist(),
                                                           s["POS"].values.tolist(),
                                                           s["Tag"].values.tolist())]
        self.grouped = self.data.groupby("Sentence #").apply(agg_func)
        self.sentences = [s for s in self.grouped]
    
    def get_next(self):
        try:
            s = self.grouped["Sentence: {}".format(self.n_sent)]
            self.n_sent += 1
            return s
        except:
            return None

getter = SentenceGetter(data)
sentences = getter.sentences

Making the index values for words and tags

word2idx = {w: i + 1 for i, w in enumerate(words)}
tag2idx = {t: i for i, t in enumerate(tags)}

plotting the history

plt.hist([len(s) for s in sentences], bins=50)
plt.show()
     

Assigning the values

X1 = [[word2idx[w[0]] for w in s] for s in sentences]
y1 = [[tag2idx[w[2]] for w in s] for s in sentences]
max_len = 50

Assigning the x value


X = sequence.pad_sequences(maxlen=max_len,
                  sequences=X1, padding="post",
                  value=num_words-1)

Assigning the y value

y = sequence.pad_sequences(maxlen=max_len,
                  sequences=y1,
                  padding="post",
                  value=tag2idx["O"])
     

Creating the model

input_word = layers.Input(shape=(max_len,))
embedding_layer=layers.Embedding(input_dim=num_words,output_dim=50,input_length=max_len)(input_word)
dropout_layer=layers.SpatialDropout1D(0.1)(embedding_layer)
bidirectional_lstm=layers.Bidirectional(
    layers.LSTM(units=100,return_sequences=True,
                recurrent_dropout=0.1))(dropout_layer)
output=layers.TimeDistributed(
    layers.Dense(num_tags,activation="softmax"))(bidirectional_lstm)
model = Model(input_word, output)

Compiling the model

model.compile(optimizer="adam",
              loss="sparse_categorical_crossentropy",
              metrics=["accuracy"])

Fitting the model

history = model.fit(
    x=X_train,
    y=y_train,
    validation_data=(X_test,y_test),
    batch_size=32,
    epochs=3,
)

Dataframe of metrics

metrics = pd.DataFrame(model.history.history)
metrics.head()

ploting the metrics

metrics[['accuracy','val_accuracy']].plot()
metrics[['loss','val_loss']].plot()

Sample text prediction


i = 50
p = model.predict(np.array([X_test[i]]))
p = np.argmax(p, axis=-1)
y_true = y_test[i]
print("{:15}{:5}\t {}\n".format("Word", "True", "Pred"))
print("-" *30)
for w, true, pred in zip(X_test[i], y_true, p[0]):
    print("{:15}{}\t{}".format(words[w-1], tags[true], tags[pred]))

OUTPUT

Training Loss, Validation Loss Vs Iteration Plot

Sample Text Prediction

RESULT

Therefore an LSTM-based deep learning model for recognizing the named entities in the text is successfully develooped.

named-entity-recognition's People

Contributors

manojvenaram avatar obedotto avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.