GithubHelp home page GithubHelp logo

ashr's Introduction

Build Status AppVeyor Build Status Coverage Status Coverage Status

This repository contains an R package for performing "Adaptive Shrinkage."

To install the ashr package first you need to install devtools

install.packages("devtools")
library(devtools)
install_github("stephens999/ashr")

Running Adaptive Shrinkage

The main function in the ashr package is ash. To get minimal help:

> library(ashr)
> ?ash

More background

The ashr (Adaptive SHrinkage") package aims to provide simple, generic, and flexible methods to derive shrinkage-based" estimates and credible intervals for unknown quantities $\beta=(\beta_1,\dots,\beta_J)$, given only estimates of those quantities ($\hat\beta=(\hat\beta_1,\dots, \hat\beta_J)$) and their corresponding estimated standard errors ($s=(s_1,\dots,s_J)$).

The ``adaptive" nature of the shrinkage is two-fold. First, the appropriate amount of shrinkage is determined from the data, rather than being pre-specified. Second, the amount of shrinkage undergone by each $\hat\beta_j$ will depend on the standard error $s_j$: measurements with high standard error will undergo more shrinkage than measurements with low standard error.

Methods Outline

The methods are based on treating the vectors $\hat\beta$ and $s$ as ``observed data", and then performing inference for $\beta$ from these observed data, using a standard hierarchical modelling framework to combine information across $j=1,\dots,J$.

Specifically, we assume that the true $\beta_j$ values are independent and identically distributed from some unimodal distribution $g$. By default we assume $g$ is unimodal about zero and symmetric. You can specify or estimate a different mode using the mode parameter. You can allow for asymmetric $g$ by specifying mixcompdist="halfuniform".

Then, we assume that the observations $\hat\beta_j \sim N(\beta_j,s_j)$, or alternatively the normal assumption can be replaced by a $t$ distribution by specifying df, the number of degrees of freedom used to estimate $s_j$. Actually this is important: do be sure to specify df if you can.

ashr's People

Contributors

daichaoxing avatar dcgerard avatar esterpantaleo avatar heejungshim avatar mengyin avatar nanxstats avatar stephens999 avatar

Watchers

 avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.