GithubHelp home page GithubHelp logo

detectingdiabetedisease's Introduction

Preliminary

XGBoost will be used for this analysis.

What is XGBoost?

XGBoost is a decision-tree-based ensemble Machine Learning algorithm that uses a gradient boosting framework. In prediction problems involving unstructured data (images, text, etc.) artificial neural networks tend to outperform all other algorithms or frameworks. However, when it comes to small-to-medium structured/tabular data, decision tree based algorithms are considered best-in-class right now.

!pip install xgboost
Collecting xgboost
  Downloading xgboost-1.2.1-py3-none-macosx_10_13_x86_64.macosx_10_14_x86_64.macosx_10_15_x86_64.whl (1.2 MB)
�[K     |████████████████████████████████| 1.2 MB 3.9 MB/s eta 0:00:01
�[?25hRequirement already satisfied: scipy in /opt/miniconda3/lib/python3.7/site-packages (from xgboost) (1.4.1)
Requirement already satisfied: numpy in /opt/miniconda3/lib/python3.7/site-packages (from xgboost) (1.18.1)
Installing collected packages: xgboost
Successfully installed xgboost-1.2.1

Dataset

Context

This dataset is originally from the National Institute of Diabetes and Digestive and Kidney Diseases. The objective of the dataset is to diagnostically predict whether or not a patient has diabetes, based on certain diagnostic measurements included in the dataset. Several constraints were placed on the selection of these instances from a larger database. In particular, all patients here are females at least 21 years old of Pima Indian heritage.

Content

The datasets consists of several medical predictor variables and one target variable, Outcome. Predictor variables includes the number of pregnancies the patient has had, their BMI, insulin level, age, and so on.

Source:

https://www.kaggle.com/uciml/pima-indians-diabetes-database

import pandas as pd

dataset = pd.read_csv('diabetes.csv')

dataset.head()
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
</style>
Pregnancies Glucose BloodPressure SkinThickness Insulin BMI DiabetesPedigreeFunction Age Outcome
0 6 148 72 35 0 33.6 0.627 50 1
1 1 85 66 29 0 26.6 0.351 31 0
2 8 183 64 0 0 23.3 0.672 32 1
3 1 89 66 23 94 28.1 0.167 21 0
4 0 137 40 35 168 43.1 2.288 33 1

Pre-processing dataset

  • Split train/set dataset
from xgboost import XGBClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
features = dataset.iloc[:, 0:8].values
labels = dataset.iloc[:,8].values
features
array([[  6.   , 148.   ,  72.   , ...,  33.6  ,   0.627,  50.   ],
       [  1.   ,  85.   ,  66.   , ...,  26.6  ,   0.351,  31.   ],
       [  8.   , 183.   ,  64.   , ...,  23.3  ,   0.672,  32.   ],
       ...,
       [  5.   , 121.   ,  72.   , ...,  26.2  ,   0.245,  30.   ],
       [  1.   , 126.   ,  60.   , ...,  30.1  ,   0.349,  47.   ],
       [  1.   ,  93.   ,  70.   , ...,  30.4  ,   0.315,  23.   ]])
labels[0:5]
array([1, 0, 1, 0, 1])

Visualizing Outcome

Plotting percentage of Outcome 0 (no disease) vs 1 (disease)

dataset.Outcome.value_counts().plot(kind='pie')
<matplotlib.axes._subplots.AxesSubplot at 0x1a26c3ed50>

png

print(f'Percentage of No Disease: {100 * labels[labels==0].shape[0] / labels.shape[0]:0.2f}')
print(f'Percentage of Disease: {100 * labels[labels==1].shape[0] / labels.shape[0]:0.2f}')
Percentage of No Disease: 65.10
Percentage of Disease: 34.90

Normalize data

from sklearn.preprocessing import MinMaxScaler

# Scalling to range (-1, 1)
scaler=MinMaxScaler( (-1, 1) )
X = scaler.fit_transform(features)
#X = features
Y = labels
X
array([[-0.29411765,  0.48743719,  0.18032787, ...,  0.00149031,
        -0.53116994, -0.03333333],
       [-0.88235294, -0.14572864,  0.08196721, ..., -0.2071535 ,
        -0.76686593, -0.66666667],
       [-0.05882353,  0.83919598,  0.04918033, ..., -0.30551416,
        -0.49274125, -0.63333333],
       ...,
       [-0.41176471,  0.2160804 ,  0.18032787, ..., -0.21907601,
        -0.85738685, -0.7       ],
       [-0.88235294,  0.26633166, -0.01639344, ..., -0.10283159,
        -0.76857387, -0.13333333],
       [-0.88235294, -0.06532663,  0.14754098, ..., -0.09388972,
        -0.79760888, -0.93333333]])

Splitting train/test sets

x_train, x_test, y_train, y_test = train_test_split(X,Y, test_size = 0.33, random_state=0)
x_train.shape
(514, 8)
x_test.shape
(254, 8)

Build and fit model

model = XGBClassifier()
model.fit(x_train, y_train)
XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1,
              colsample_bynode=1, colsample_bytree=1, gamma=0, gpu_id=-1,
              importance_type='gain', interaction_constraints='',
              learning_rate=0.300000012, max_delta_step=0, max_depth=6,
              min_child_weight=1, missing=nan, monotone_constraints='()',
              n_estimators=100, n_jobs=0, num_parallel_tree=1, random_state=0,
              reg_alpha=0, reg_lambda=1, scale_pos_weight=1, subsample=1,
              tree_method='exact', validate_parameters=1, verbosity=None)

Prediction and evaluation

y_pred = model.predict(x_test)
y_pred
array([1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0,
       0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1,
       1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0,
       1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1,
       0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
       0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0,
       0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0,
       0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0,
       0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
# accuracy
acc = accuracy_score(y_test, y_pred)
print(f'Accuracy score: {acc * 100:0.2f}')
Accuracy score: 75.98

Summary

What we have learned:

  • Quick load and visualize dataset
  • Using MinMaxScaler
  • Using XGBoost

detectingdiabetedisease's People

Watchers

James Cloos avatar Le Minh Ha avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.