GithubHelp home page GithubHelp logo

phoenics's Introduction

Phoenics

Phoenics is an open source optimization algorithm combining ideas from Bayesian optimization with Bayesian Kernel Density estimation [1]. It performs global optimization on expensive to evaluate objectives, such as physical experiments or demanding computations. Phoenics supports sequential and batch optimizations and allows for the simultaneous optimization of multiple objectives via the Chimera scalarizing function [2].

Check out the examples folder for detailed descriptions and code examples for:

Example Link
Sequential optimization examples/optimization_sequential
Parallelizable batch optimization examples/optimization_parallel
Periodic parameter support examples/optimization_periodic_parameters
Multi-objective optimization examples/optimization_multiple_objectives

More elaborate applications of Phoenics and Chimera are listed below

Application Link
Auto-calibration of a virtual robot examples/application_robot_calibration

Chimera

Chimera is a general purpose achievement scalarizing function for multi-objective optimization. User preferences regarding the objectives are expected in terms of an importance hierarchy, as well as relative tolerances on each objective indicating what level of degradation is acceptable. Chimera is integrated into Phoenics, but also available for download as a wrapper for other optimization methods (see chimera).

Installation

You can install Phoenics via pip

apt-get install python-pip
pip install phoenics

or by creating a conda environment from the provided environment file

conda env create -f environment.yml
source activate phoenics

Alternatively, you can also choose to build Phoenics from source by cloning this repository

git clone https://github.com/aspuru-guzik-group/phoenics.git
Requirements

This code has been tested with Python 3.6 and uses

  • cython 0.27.3
  • json 2.0.9
  • numpy 1.13.1
  • scipy 0.19.1

Phoenics can construct its probabilistic model with two different probabilistic modeling libraries: PyMC3 and Edward. Depending on your preferences, you will either need

  • pymc3 3.2
  • theano 1.0.1

or

  • edward 1.3.5
  • tensorflow 1.4.1

Check out the environment.yml file for more details.

Using Phoenics

Phoenics is designed to suggest new parameter points based on prior observations. The suggested parameters can then be passed on to objective evaluations (experiments or involved computation). As soon as the objective values have been determined for a set of parameters, these new observations can again be passed on to Phoenics to request new, more informative parameters.

from phoenics import Phoenics
    
# create an instance from a configuration file
config_file = 'config.json'
phoenics    = Phoenics(config_file)
    
# request new parameters from a set of observations
params      = phoenics.choose(observations = observations)

Detailed examples for specific applications are presented in the examples folder.

Using Chimera

Chimera is integrated into Phoenics, but also available as a stand-alone wrapper for other single-objective optimization algorithms. The Chimera wrapper allows to cast a set of objectives for a number of observations into a single objective value for each observation, enabling single-objective optimization algorithms to solve the multi-objective optimization problem. The usage of Chimera is outlined below on an example with four objective functions

from chimera import Chimera

# define tolerances in descending order of importance
tolerances = [0.25, 0.1, 0.25, 0.05]

# create Chimera instance
chimera = Chimera(tolerances)

# cast objectives of shape      [num_observations, num_objectives]
# into single objective vector  [num_observations, 1]
single_objectives = chimera.scalarize_objectives(objectives)

Note: Phoenics automatically employs Chimera when the configuration contains more than one objective.

Disclaimer

Note: This repository is under construction! We hope to add futther details on the method, instructions and more examples in the near future.

References

[1] Häse, F., Roch, L. M., Kreisbeck, C., & Aspuru-Guzik, A. (2018). Phoenics: A universal deep Bayesian optimizer. arXiv preprint arXiv:1801.01469.
[2] Häse, F., Roch, L. M., & Aspuru-Guzik, A. (2018). Chimera: enabling hierarchy based multi-objective optimization for self-driving laboratories. chemRxiv preprint 10.26434/chemrxiv.6195176.v1.

phoenics's People

Contributors

florianhase avatar

Watchers

James Cloos avatar Nimish Awalgaonkar avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.