GithubHelp home page GithubHelp logo

njhostet / hostetter_and_royle_2020_movementecology Goto Github PK

View Code? Open in Web Editor NEW
0.0 1.0 2.0 22 KB

Hostetter, N. J., and J. A. Royle. 2020. Movement-assisted localization from acoustic telemetry data. Movement Ecology 8:15.

R 100.00%
spatial-capture-recapture telemetry bioacoustics acoustic-telemetry movement-ecology

hostetter_and_royle_2020_movementecology's Introduction

Hostetter, N. J., and J. A. Royle

Movement Ecology

Please contact the first author for questions about the code or data requests: Nathan Hostetter ([email protected])


Abstract:

Background: Acoustic telemetry technologies are being increasingly deployed to study a variety of aquatic taxa including fishes, reptiles, and marine mammals. Large cooperative telemetry networks produce vast quantities of data useful in the study of movement, resource selection and species distribution. Efficient use of acoustic telemetry data requires estimation of acoustic source locations from detections at receivers (i.e., “localization”). Multiple processes provide information for localization estimation including detection/non-detection data at receivers, information on signal rate, and an underlying movement model describing how individuals move and utilize space. Frequently, however, localization methods only integrate a subset of these processes and do not utilize the full spatial encounter history information available from receiver arrays.

Methods: In this paper we draw analogies between the challenges of acoustic telemetry localization and newly developed methods of spatial capture-recapture (SCR). We develop a framework for localization that integrates explicit sub-models for movement, signal (or cue) rate, and detection probability, based on acoustic telemetry spatial encounter history data. This method, which we call movement-assisted localization, makes efficient use of the full encounter history data available from acoustic receiver arrays, provides localizations with fewer than three detections, and even allows for predictions to be made of the position of an individual when it was not detected at all. We demonstrate these concepts by developing generalizable Bayesian formulations of the SCR movement-assisted localization model to address study-specific challenges common in acoustic telemetry studies.

Results: Simulation studies show that movement-assisted localization models improve point-wise RMSE of localization estimates by > 50% and greatly increased the precision of estimated trajectories compared to localization using only the detection history of a given signal. Additionally, integrating a signal rate sub-model reduced biases in the estimation of movement, signal rate, and detection parameters observed in independent localization models.

Conclusions: Movement-assisted localization provides a flexible framework to maximize the use of acoustic telemetry data. Conceptualizing localization within an SCR framework allows extensions to a variety of data collection protocols, improves the efficiency of studies interested in movement, resource selection, and space-use, and provides a unifying framework for modeling acoustic data.

Code

  1. simulation_analysis: This folder contains the code to simulate and analyze data. It also generates the JAGS file for the Bayesian implementation.

Data

All data are reproducible from the simulation script.

hostetter_and_royle_2020_movementecology's People

Contributors

njhostet avatar

Watchers

 avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.