GithubHelp home page GithubHelp logo

copper's Introduction

COPPER

Contents: This repository contains the COPPER (COsmological Parametrized PERturbations) package - a Mathematica notebook building on xIST (https://github.com/noller/xIST) to investigate cosmological scalar-tensor theories. Note that an older version of this notebook is also distributed with the xIST package itself. The latest version and release date is:

COPPER, version 0.8.4, {2018, 7, 6}

CopyRight (C) 2016-18, Johannes Noller, under the General Public License.

Installation notes: xIST and COPPER require a working installation of Mathematica and xAct. For details, downloads and documentation for xAct please go to http://www.xact.es. For xIST (and especially for detailed installation instructions for xIST) go to https://github.com/noller/xIST.

Methodology and computation notes: The COPPER notebook takes the general ansatz for a quadratic action of perturbations for a tensor and a scalar in an FRW-like background as discussed in the accompanying paper A general theory of linear cosmological perturbations: scalar-tensor and vector-tensor theories (http://arxiv.org/abs/1604.01396) and as is already contained in the xIST package. It then computes all Noether constraints from requiring this action to be diffeomorphism-invariant. Finally it solves all constraints and in that way obtains the true number of independent background functions/coefficients in the full quadratic perturbative action. We present the full actions derived in this way and expressions relating the free coefficients to the original ansatz.

Comparison with accompanying paper "arXiv:1604.01396": The Lagrangians used in the ``Lagrangian setup" sections throughout COPPER are imported from the xIST package and should be compared with equations 4.5-4.9 and G.1-G.2 of the accompanying arXiv:1604.01396. Note that, while in the paper different letters (T's and L's) are used for background (time-dependent) coefficients in this action, in the COPPER file we stick with a uniform convention of labelling all coefficients in our starting action as L's. Otherwise our starting expressions are identical and the final answers expressed in terms of ``alpha'' coefficients are equivalent, see e.g. equation 4.15 as compared to the final action in the 3rd order ``Beyond Horndeski'' case computed in COPPER or equation 3.30 in the paper as compared to the final action in the GR case computed in COPPER (final actions in COPPER are expressed in Fourier-space, whereas in the paper we have kept explicit spatial derivatives in the final actions).

Known issues and bugs: All the individual sections in COPPER can be computed without any known issues/problems arising. However, when computing the ``Lagrangian setup'' sections of several of the sections in COPPER in succession (e.g. as part of evaluating the full notebook), a problem with the internal vbundles and index recognition appears. This is due to a bug when calling the xAct MakeRule function (giving rise to a "VBundleOfIndex::unknown" error that aborts the computation). If this occurs, the simplest solution is to re-start the kernel/only carry out the computations in one of the sections at a time and re-starting the kernel and re-loading xIST whenever one would like to move on. I'm working to resolve this issue fully so no such manual workaround is required.

copper's People

Contributors

noller avatar

Watchers

 avatar

Forkers

wolffem

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.