GithubHelp home page GithubHelp logo

peterponert / supervision Goto Github PK

View Code? Open in Web Editor NEW

This project forked from roboflow/supervision

0.0 0.0 0.0 164.54 MB

We write your reusable computer vision tools. ๐Ÿ’œ

Home Page: https://supervision.roboflow.com

License: MIT License

Python 100.00%

supervision's Introduction

๐Ÿ‘‹ hello

We write your reusable computer vision tools. Whether you need to load your dataset from your hard drive, draw detections on an image or video, or count how many detections are in a zone. You can count on us! ๐Ÿค

supervision-hackfest

๐Ÿ’ป install

Pip install the supervision package in a Python>=3.8 environment.

pip install supervision

Read more about desktop, headless, and local installation in our guide.

๐Ÿ”ฅ quickstart

models

Supervision was designed to be model agnostic. Just plug in any classification, detection, or segmentation model. For your convenience, we have created connectors for the most popular libraries like Ultralytics, Transformers, or MMDetection.

import cv2
import supervision as sv
from ultralytics import YOLO

image = cv2.imread(...)
model = YOLO('yolov8s.pt')
result = model(image)[0]
detections = sv.Detections.from_ultralytics(result)

len(detections)
# 5
๐Ÿ‘‰ more model connectors
  • inference

    Running with Inference requires a Roboflow API KEY.

    import cv2
    import supervision as sv
    from inference.models.utils import get_roboflow_model
    
    image = cv2.imread(...)
    model = get_roboflow_model(model_id="yolov8s-640", api_key=<ROBOFLOW API KEY>)
    result = model.infer(image)[0]
    detections = sv.Detections.from_inference(result)
    
    len(detections)
    #ย 5

annotators

Supervision offers a wide range of highly customizable annotators, allowing you to compose the perfect visualization for your use case.

import cv2
import supervision as sv

image = cv2.imread(...)
detections = sv.Detections(...)

bounding_box_annotator = sv.BoundingBoxAnnotator()
annotated_frame = bounding_box_annotator.annotate(
    scene=image.copy(),
    detections=detections
)
supervision-0.16.0-annotators.mp4

datasets

Supervision provides a set of utils that allow you to load, split, merge, and save datasets in one of the supported formats.

import supervision as sv

dataset = sv.DetectionDataset.from_yolo(
    images_directory_path=...,
    annotations_directory_path=...,
    data_yaml_path=...
)

dataset.classes
['dog', 'person']

len(dataset)
#ย 1000
๐Ÿ‘‰ more dataset utils
  • load

    dataset = sv.DetectionDataset.from_yolo(
        images_directory_path=...,
        annotations_directory_path=...,
        data_yaml_path=...
    )
    
    dataset = sv.DetectionDataset.from_pascal_voc(
        images_directory_path=...,
        annotations_directory_path=...
    )
    
    dataset = sv.DetectionDataset.from_coco(
        images_directory_path=...,
        annotations_path=...
    )
  • split

    train_dataset, test_dataset = dataset.split(split_ratio=0.7)
    test_dataset, valid_dataset = test_dataset.split(split_ratio=0.5)
    
    len(train_dataset), len(test_dataset), len(valid_dataset)
    #ย (700, 150, 150)
  • merge

    ds_1 = sv.DetectionDataset(...)
    len(ds_1)
    #ย 100
    ds_1.classes
    #ย ['dog', 'person']
    
    ds_2 = sv.DetectionDataset(...)
    len(ds_2)
    # 200
    ds_2.classes
    #ย ['cat']
    
    ds_merged = sv.DetectionDataset.merge([ds_1, ds_2])
    len(ds_merged)
    #ย 300
    ds_merged.classes
    #ย ['cat', 'dog', 'person']
  • save

    dataset.as_yolo(
        images_directory_path=...,
        annotations_directory_path=...,
        data_yaml_path=...
    )
    
    dataset.as_pascal_voc(
        images_directory_path=...,
        annotations_directory_path=...
    )
    
    dataset.as_coco(
        images_directory_path=...,
        annotations_path=...
    )
  • convert

    sv.DetectionDataset.from_yolo(
        images_directory_path=...,
        annotations_directory_path=...,
        data_yaml_path=...
    ).as_pascal_voc(
        images_directory_path=...,
        annotations_directory_path=...
    )

๐ŸŽฌ tutorials

Speed Estimation & Vehicle Tracking | Computer Vision | Open Source Speed Estimation & Vehicle Tracking | Computer Vision | Open Source

Created: 11 Jan 2024 | Updated: 11 Jan 2024

Learn how to track and estimate the speed of vehicles using YOLO, ByteTrack, and Roboflow Inference. This comprehensive tutorial covers object detection, multi-object tracking, filtering detections, perspective transformation, speed estimation, visualization improvements, and more.


Traffic Analysis with YOLOv8 and ByteTrack - Vehicle Detection and Tracking Traffic Analysis with YOLOv8 and ByteTrack - Vehicle Detection and Tracking

Created: 6 Sep 2023 | Updated: 6 Sep 2023

In this video, we explore real-time traffic analysis using YOLOv8 and ByteTrack to detect and track vehicles on aerial images. Harnessing the power of Python and Supervision, we delve deep into assigning cars to specific entry zones and understanding their direction of movement. By visualizing their paths, we gain insights into traffic flow across bustling roundabouts...

๐Ÿ’œ built with supervision

Did you build something cool using supervision? Let us know!

football-players-tracking-25.mp4
traffic_analysis_result.mov
vehicles-step-7-new.mp4

๐Ÿ“š documentation

Visit our documentation page to learn how supervision can help you build computer vision applications faster and more reliably.

๐Ÿ† contribution

We love your input! Please see our contributing guide to get started. Thank you ๐Ÿ™ to all our contributors!


supervision's People

Contributors

skalskip avatar onuralpszr avatar pre-commit-ci[bot] avatar dependabot[bot] avatar hardikdava avatar capjamesg avatar kirilllzaitsev avatar mayankagarwals avatar xaristeidou avatar nickherrig avatar adonaivera avatar rajarshi-misra avatar yeldarby avatar levivasconcelos avatar linasko avatar dbroboflow avatar revtheundead avatar kadermiyanyedi avatar paulguerrie avatar abhishek7kalra avatar danssou avatar antonioconsiglio avatar killua7362 avatar pacificdou avatar ashishdatta avatar iamhatesz avatar pankajkrana avatar xenteros avatar raghavvgupta avatar danigarciaoca avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.