GithubHelp home page GithubHelp logo

ramonjfreire / haversine Goto Github PK

View Code? Open in Web Editor NEW

This project forked from mapado/haversine

0.0 0.0 0.0 119 KB

Calculate the distance bewteen 2 points on Earth

License: MIT License

Python 97.24% Makefile 2.76%

haversine's Introduction

Haversine

Calculate the distance (in various units) between two points on Earth using their latitude and longitude.

Installation

pip install haversine

Usage

Calculate the distance between Lyon and Paris

from haversine import haversine, Unit

lyon = (45.7597, 4.8422) # (lat, lon)
paris = (48.8567, 2.3508)

haversine(lyon, paris)
>> 392.2172595594006  # in kilometers

haversine(lyon, paris, unit=Unit.MILES)
>> 243.71250609539814  # in miles

# you can also use the string abbreviation for units:
haversine(lyon, paris, unit='mi')
>> 243.71250609539814  # in miles

haversine(lyon, paris, unit=Unit.NAUTICAL_MILES)
>> 211.78037755311516  # in nautical miles

The lat/lon values need to be provided in degrees of the ranges [-90,90] (lat) and [-180,180] (lon). If values are outside their ranges, an error will be raised. This can be avoided by automatic normalization via the normalize parameter.

The haversine.Unit enum contains all supported units:

import haversine

print(tuple(haversine.Unit))

outputs

(<Unit.KILOMETERS: 'km'>, <Unit.METERS: 'm'>, <Unit.MILES: 'mi'>,
 <Unit.NAUTICAL_MILES: 'nmi'>, <Unit.FEET: 'ft'>, <Unit.INCHES: 'in'>,
 <Unit.RADIANS: 'rad'>, <Unit.DEGREES: 'deg'>)

Note for radians and degrees

The radian and degrees returns the great circle distance between two points on a sphere.

Notes:

  • on a unit-sphere the angular distance in radians equals the distance between the two points on the sphere (definition of radians)
  • When using "degree", this angle is just converted from radians to degrees

Inverse Haversine Formula

Calculates a point from a given vector (distance and direction) and start point. Currently explicitly supports both cardinal (north, east, south, west) and intercardinal (northeast, southeast, southwest, northwest) directions. But also allows for explicit angles expressed in Radians.

Example: Finding arbitary point from Paris

from haversine import inverse_haversine, Direction
from math import pi
paris = (48.8567, 2.3508) # (lat, lon)
# Finding 32 km west of Paris
inverse_haversine(paris, 32, Direction.WEST)
# returns tuple (48.85587279023947, 1.9134085092836945)
# Finding 32 km southwest of Paris
inverse_haversine(paris, 32, pi * 1.25)
# returns tuple (48.65279552300661, 2.0427666779658806)
# Finding 50 miles north of Paris
inverse_haversine(paris, 50, Direction.NORTH, unit=Unit.MILES)
# returns tuple (49.58035791599536, 2.3508)
# Finding 10 nautical miles south of Paris
inverse_haversine(paris, 10, Direction.SOUTH, unit=Unit.NAUTICAL_MILES)
# returns tuple (48.690145868497645, 2.3508)

Performance optimisation for distances between all points in two vectors

You will need to add numpy in order to gain performance with vectors.

You can then do this:

from haversine import haversine_vector, Unit

lyon = (45.7597, 4.8422) # (lat, lon)
paris = (48.8567, 2.3508)
new_york = (40.7033962, -74.2351462)

haversine_vector([lyon, lyon], [paris, new_york], Unit.KILOMETERS)

>> array([ 392.21725956, 6163.43638211])

It is generally slower to use haversine_vector to get distance between two points, but can be really fast to compare distances between two vectors.

Combine matrix

You can generate a matrix of all combinations between coordinates in different vectors by setting comb parameter as True.

from haversine import haversine_vector, Unit

lyon = (45.7597, 4.8422) # (lat, lon)
london = (51.509865, -0.118092)
paris = (48.8567, 2.3508)
new_york = (40.7033962, -74.2351462)

haversine_vector([lyon, london], [paris, new_york], Unit.KILOMETERS, comb=True)

>> array([[ 392.21725956,  343.37455271],
 	  [6163.43638211, 5586.48447423]])

The output array from the example above returns the following table:

Paris New York
Lyon Lyon <-> Paris Lyon <-> New York
London London <-> Paris London <-> New York

By definition, if you have a vector a with n elements, and a vector b with m elements. The result matrix M would be $n x m$ and a element M[i,j] from the matrix would be the distance between the ith coordinate from vector a and jth coordinate with vector b.

Contributing

Clone the project.

Install pipenv.

Run pipenv install --dev

Launch test with pipenv run pytest

haversine's People

Contributors

jdeniau avatar merschformann avatar jankatins avatar ccforgy avatar fdms-3741 avatar dependabot[bot] avatar noezor avatar carlosloslas avatar crapsjeroen avatar plammens avatar adamchainz avatar superamin avatar brouberol avatar leforestier avatar juandes avatar kraj avatar enagorny avatar kukiel avatar maurycyp avatar nonsignificantp avatar ocefpaf avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.