GithubHelp home page GithubHelp logo

sandy4321 / -understanding-and-predicting-property-maintenance-fines Goto Github PK

View Code? Open in Web Editor NEW

This project forked from adi112100/-understanding-and-predicting-property-maintenance-fines

0.0 0.0 0.0 3.26 MB

This assignment is based on a data challenge from the Michigan Data Science Team (MDST). The Michigan Data Science Team (MDST) and the Michigan Student Symposium for Interdisciplinary Statistical Sciences (MSSISS) have partnered with the City of Detroit to help solve one of the most pressing problems facing Detroit - blight. Blight violations are issued by the city to individuals who allow their properties to remain in a deteriorated condition. Every year, the city of Detroit issues millions of dollars in fines to residents and every year, many of these fines remain unpaid. Enforcing unpaid blight fines is a costly and tedious process, so the city wants to know: how can we increase blight ticket compliance? The first step in answering this question is understanding when and why a resident might fail to comply with a blight ticket. This is where predictive modeling comes in. For this assignment, your task is to predict whether a given blight ticket will be paid on time. All data for this assignment has been provided to us through the Detroit Open Data Portal. Only the data already included in your Coursera directory can be used for training the model for this assignment. Nonetheless, we encourage you to look into data from other Detroit datasets to help inform feature creation and model selection. We recommend taking a look at the following related datasets: Building Permits Trades Permits Improve Detroit: Submitted Issues DPD: Citizen Complaints Parcel Map We provide you with two data files for use in training and validating your models: train.csv and test.csv. Each row in these two files corresponds to a single blight ticket, and includes information about when, why, and to whom each ticket was issued. The target variable is compliance, which is True if the ticket was paid early, on time, or within one month of the hearing data, False if the ticket was paid after the hearing date or not at all, and Null if the violator was found not responsible. Compliance, as well as a handful of other variables that will not be available at test-time, are only included in train.csv. Note: All tickets where the violators were found not responsible are not considered during evaluation. They are included in the training set as an additional source of data for visualization, and to enable unsupervised and semi-supervised approaches. However, they are not included in the test set. File descriptions (Use only this data for training your model!) readonly/train.csv - the training set (all tickets issued 2004-2011) readonly/test.csv - the test set (all tickets issued 2012-2016) readonly/addresses.csv & readonly/latlons.csv - mapping from ticket id to addresses, and from addresses to lat/lon coordinates. Note: misspelled addresses may be incorrectly geolocated. Data fields train.csv & test.csv ticket_id - unique identifier for tickets agency_name - Agency that issued the ticket inspector_name - Name of inspector that issued the ticket violator_name - Name of the person/organization that the ticket was issued to violation_street_number, violation_street_name, violation_zip_code - Address where the violation occurred mailing_address_str_number, mailing_address_str_name, city, state, zip_code, non_us_str_code, country - Mailing address of the violator ticket_issued_date - Date and time the ticket was issued hearing_date - Date and time the violator's hearing was scheduled violation_code, violation_description - Type of violation disposition - Judgment and judgement type fine_amount - Violation fine amount, excluding fees admin_fee - $20 fee assigned to responsible judgments state_fee - $10 fee assigned to responsible judgments late_fee - 10% fee assigned to responsible judgments discount_amount - discount applied, if any clean_up_cost - DPW clean-up or graffiti removal cost judgment_amount - Sum of all fines and fees grafitti_status - Flag for graffiti violations train.csv only payment_amount - Amount paid, if any payment_date - Date payment was made, if it was received payment_status - Current payment status as of Feb 1 2017 balance_due - Fines and fees still owed collection_status - Flag for payments in collections compliance [target variable for prediction] Null = Not responsible 0 = Responsible, non-compliant 1 = Responsible, compliant compliance_detail - More information on why each ticket was marked compliant or non-compliant

Jupyter Notebook 100.00%

-understanding-and-predicting-property-maintenance-fines's Introduction

-Understanding-and-Predicting-Property-Maintenance-Fines

This assignment is based on a data challenge from the Michigan Data Science Team (MDST).

The Michigan Data Science Team (MDST) and the Michigan Student Symposium for Interdisciplinary Statistical Sciences (MSSISS) have partnered with the City of Detroit to help solve one of the most pressing problems facing Detroit - blight. Blight violations are issued by the city to individuals who allow their properties to remain in a deteriorated condition. Every year, the city of Detroit issues millions of dollars in fines to residents and every year, many of these fines remain unpaid. Enforcing unpaid blight fines is a costly and tedious process, so the city wants to know: how can we increase blight ticket compliance?

The first step in answering this question is understanding when and why a resident might fail to comply with a blight ticket. This is where predictive modeling comes in. For this assignment, your task is to predict whether a given blight ticket will be paid on time.

All data for this assignment has been provided to us through the Detroit Open Data Portal. Only the data already included in your Coursera directory can be used for training the model for this assignment. Nonetheless, we encourage you to look into data from other Detroit datasets to help inform feature creation and model selection. We recommend taking a look at the following related datasets:

1.Building Permits 2.Trades Permits 3.Improve Detroit: Submitted Issues 4.DPD: Citizen Complaints 5.Parcel Map

We provide you with two data files for use in training and validating your models: train.csv and test.csv. Each row in these two files corresponds to a single blight ticket, and includes information about when, why, and to whom each ticket was issued. The target variable is compliance, which is True if the ticket was paid early, on time, or within one month of the hearing data, False if the ticket was paid after the hearing date or not at all, and Null if the violator was found not responsible. Compliance, as well as a handful of other variables that will not be available at test-time, are only included in train.csv.

Note: All tickets where the violators were found not responsible are not considered during evaluation. They are included in the training set as an additional source of data for visualization, and to enable unsupervised and semi-supervised approaches. However, they are not included in the test set.

File descriptions (Use only this data for training your model!) readonly/train.csv - the training set (all tickets issued 2004-2011) readonly/test.csv - the test set (all tickets issued 2012-2016) readonly/addresses.csv & readonly/latlons.csv - mapping from ticket id to addresses, and from addresses to lat/lon coordinates. Note: misspelled addresses may be incorrectly geolocated.

Data fields train.csv &; test.csv

ticket_id - unique identifier for tickets agency_name - Agency that issued the ticket inspector_name - Name of inspector that issued the ticket violator_name - Name of the person/organization that the ticket was issued to violation_street_number, violation_street_name, violation_zip_code - Address where the violation occurred mailing_address_str_number, mailing_address_str_name, city, state, zip_code, non_us_str_code, country - Mailing address of the violator ticket_issued_date - Date and time the ticket was issued hearing_date - Date and time the violator's hearing was scheduled violation_code, violation_description - Type of violation disposition - Judgment and judgement type fine_amount - Violation fine amount, excluding fees admin_fee - $20 fee assigned to responsible judgments state_fee - $10 fee assigned to responsible judgments late_fee - 10% fee assigned to responsible judgments discount_amount - discount applied, if any clean_up_cost - DPW clean-up or graffiti removal cost judgment_amount - Sum of all fines and fees grafitti_status - Flag for graffiti violations

train.csv only
payment_amount - Amount paid, if any payment_date - Date payment was made, if it was received payment_status - Current payment status as of Feb 1 2017 balance_due - Fines and fees still owed collection_status - Flag for payments in collections compliance [target variable for prediction]
Null = Not responsible 0 = Responsible, non-compliant 1 = Responsible, compliant compliance_detail - More information on why each ticket was marked compliant or non-compliant

-understanding-and-predicting-property-maintenance-fines's People

Contributors

adi112100 avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.