GithubHelp home page GithubHelp logo

simexin / visualizationqualitycontrol Goto Github PK

View Code? Open in Web Editor NEW

This project forked from moseleybioinformaticslab/visualizationqualitycontrol

0.0 2.0 0.0 821 KB

Visualization methods for omics dataset quality control

License: Other

R 100.00%

visualizationqualitycontrol's Introduction

Visualization Quality Control

Join the chat at https://gitter.im/rmflight/visualizationQualityControl

Set of useful functions for calculating various measures from data and visualizing them.

Takes a lot of inspiration from Gierlinski et al., 2015, especially the median_correlation and outlier_fraction functions.

This readme is documenting functionality as of 818b62f8.

Installation

Dependencies

Note that before installing, you will want to install the ggbiplot package, and at least v1.2.1 of the ComplexHeatmap package. Robert M Flight maintains a fork of ggbiplot on GitHub because it is not part of CRAN, and as of July 2, 2015, ComplexHeatmap must be installed from GitHub:

devtools::install_github("rmflight/ggbiplot")
devtools::install_github("jokergoo/ComplexHeatmap")

Other odd dependencies that may not be present include the dendsort package, and the viridis package:

install.packages("dendsort")
install.packages("viridis")

This Package

This package can be installed by cloning from the GitLab repo:

git clone https://gitlab.cesb.uky.edu/rmflight/visualizationQualityControl.git
cd visualizationQualityControl
R
devtools::install(".", quick = FALSE) # builds the vignette, which you definitely want

Alternatively, you can install it from GitHub in one go:

devtools::install_github("rmflight/visualizationQualityControl", quick = FALSE)

Examples

These examples show the primary functionality. We will apply the visualizations to a two group dataset. However, all of the functions are still applicable to datasets with more than two groups. The examples below are for a dataset where there has been a sample swapped between the two groups (i.e. there is a problem!). If you want to see how the visualizations compare between a good dataset and a bad dataset, see the vignette.

library(visualizationQualityControl)
data("grp_cor_data")
exp_data <- grp_cor_data$data
rownames(exp_data) <- paste0("f", seq(1, nrow(exp_data)))
colnames(exp_data) <- paste0("s", seq(1, ncol(exp_data)))

sample_info <- data.frame(id = colnames(exp_data), class = grp_cor_data$class)

exp_data[, 5] <- grp_cor_data$data[, 19]
exp_data[, 19] <- grp_cor_data$data[, 5]
sample_classes <- sample_info$class

visqc_pca

pca_data <- prcomp(t(exp_data), center = TRUE)
visqc_pca(pca_data, groups = sample_classes)

visqc_heatmap

Calculate sample-sample correlations and reorder based on within class correlations

data_cor <- pairwise_correlation(t(exp_data), exclude_0 = TRUE)$cor
data_order <- similarity_reorderbyclass(data_cor, sample_classes, transform = "sub_1")

And then generate a colormapping for the sample classes and plot the correlation heatmap.

data_legend <- generate_group_colors(2)
names(data_legend) <- c("grp1", "grp2")
row_data <- sample_info[, "class", drop = FALSE]
row_annotation <- list(class = data_legend)

library(viridis)
library(circlize)
colormap <- colorRamp2(seq(0.4, 1, length.out = 20), viridis::viridis(20))

visqc_heatmap(data_cor, colormap, "Correlation", row_color_data = row_data,
              row_color_list = row_annotation, col_color_data = row_data,
              col_color_list = row_annotation, row_order = data_order$indices,
              column_order = data_order$indices)

median_correlations

data_medcor <- median_correlations(data_cor, sample_classes)
ggplot(data_medcor, aes(x = sample_id, y = med_cor)) + geom_point() + 
  facet_grid(. ~ sample_class, scales = "free") + ggtitle("Median Correlation")

outlier_fraction

data_outlier <- outlier_fraction(t(exp_data), sample_classes)
ggplot(data_outlier, aes(x = sample, y = frac)) + geom_point() + 
  facet_grid(. ~ class, scales = "free") + ggtitle("Outlier Fraction")

Open Vignette

To open the vignette giving an example of examining data for quality control purposes, you should see the quality_control vignette using:

vignette("quality_control", package = "visualizationQualityControl")

This will open the vignette in the help pane in RStudio, which is often what you want to happen.

Fake Data Generation

Some fake data is stored in grp_cor_data that is useful for testing the median_correlation function. It was generated by:

library(fakeDataWithError)
set.seed(1234)

s1 <- runif(100, 0, 1)
grp1 <- add_uniform_noise(10, s1, 0.1)

model_data <- data.frame(s1 = s1, s2 = grp1[, 1])

lm_1 <- lm(s1 ~ s2, data = model_data)

lm_1$coefficients[2] <- 0.5

s3 <- predict(lm_1)
s4 <- add_uniform_noise(1, s3, 0.2)

grp2 <- add_uniform_noise(10, s4, 0.1)

grp_class <- rep(c("grp1", "grp2"), each = 10)

grp_cor_data <- list(data = cbind(grp1, grp2), class = grp_class)

library(fakeDataWithError)
set.seed(1234)

n_point <- 1000
n_rep <- 10

# a nice log-normal distribution of points with points along the entire range
simulated_data <- c(rlnorm(n_point / 2, meanlog = 1, sdlog = 1),
                    runif(n_point / 2, 5, 100))

# go to log to have decent correlations on the "transformed" data
lsim1 <- log(simulated_data)

# add some uniform noise to get lower than 1 correlations
lgrp1 <- add_uniform_noise(n_rep, lsim1, .5)

# add some uniform noise to everything in normal space
sim1_error <- add_uniform_noise(n_rep, simulated_data, 1, use_zero = TRUE)
# and generate the grp1 data in normal space
ngrp1 <- exp(lgrp1) + sim1_error


# do regression to generate some other data
model_data <- data.frame(lsim1 = lsim1, lsim2 = lgrp1[, 1])
lm_1 <- lm(lsim1 ~ lsim2, data = model_data)

# reduce the correlation between them
lm_1$coefficients[2] <- 0.5
lsim3 <- predict(lm_1)

# and a bunch of error
lsim4 <- add_uniform_noise(1, lsim3, 1.5)

# create group with added error to reduce correlation from 1
lgrp2 <- add_uniform_noise(10, lsim4, .5)

# add error in original space
nsim4 <- exp(lsim4)
sim4_error <- add_uniform_noise(10, nsim4, 1, use_zero = TRUE)
ngrp2 <- exp(lgrp2) + sim4_error

# put all data together, and make negatives zero
all_data <- cbind(ngrp1, ngrp2)
all_data[(all_data < 0)] <- 0

grp_class <- rep(c("grp1", "grp2"), each = 10)

grp_exp_data <- list(data = all_data, class = grp_class)

visualizationqualitycontrol's People

Contributors

gitter-badger avatar rmflight avatar

Watchers

 avatar  avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.