GithubHelp home page GithubHelp logo

stdlib-js / random-strided-weibull Goto Github PK

View Code? Open in Web Editor NEW
1.0 3.0 0.0 2.62 MB

Fill a strided array with pseudorandom numbers drawn from a Weibull distribution.

Home Page: https://github.com/stdlib-js/stdlib

License: Apache License 2.0

JavaScript 81.73% Makefile 18.27%
continuous generator javascript math mathematics node node-js nodejs prng pseudorandom

random-strided-weibull's Introduction

About stdlib...

We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.

The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.

When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.

To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!

Weibull Random Numbers

NPM version Build Status Coverage Status

Fill a strided array with pseudorandom numbers drawn from a Weibull distribution.

Installation

npm install @stdlib/random-strided-weibull

Alternatively,

The branches.md file summarizes the available branches and displays a diagram illustrating their relationships.

Usage

var weibull = require( '@stdlib/random-strided-weibull' );

weibull( N, k, sk, lambda, sl, out, so[, options] )

Fills a strided array with pseudorandom numbers drawn from a Weibull distribution.

var Float64Array = require( '@stdlib/array-float64' );

// Create an array:
var out = new Float64Array( 10 );

// Fill the array with pseudorandom numbers:
weibull( out.length, [ 2.0 ], 0, [ 5.0 ], 0, out, 1 );

The function has the following parameters:

  • N: number of indexed elements.
  • k: scale parameter.
  • sk: index increment for k.
  • lambda: shape parameter.
  • sl: index increment for lambda.
  • out: output array.
  • so: index increment for out.

The N and stride parameters determine which strided array elements are accessed at runtime. For example, to access every other value in out,

var out = [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ];

weibull( 3, [ 2.0 ], 0, [ 5.0 ], 0, out, 2 );

Note that indexing is relative to the first index. To introduce an offset, use typed array views.

var Float64Array = require( '@stdlib/array-float64' );

// Initial arrays...
var k0 = new Float64Array( [ 0.0, 0.0, 0.0, 2.0, 2.0, 2.0 ] );
var lambda0 = new Float64Array( [ 5.0, 5.0, 5.0, 5.0, 5.0, 5.0 ] );

// Create offset views...
var k1 = new Float64Array( k0.buffer, k0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var lambda1 = new Float64Array( lambda0.buffer, lambda0.BYTES_PER_ELEMENT*3 ); // start at 4th element

// Create an output array:
var out = new Float64Array( 3 );

// Fill the output array:
weibull( out.length, k1, -2, lambda1, 1, out, 1 );

The function accepts the following options:

  • prng: pseudorandom number generator for generating uniformly distributed pseudorandom numbers on the interval [0,1). If provided, the function ignores both the state and seed options. In order to seed the underlying pseudorandom number generator, one must seed the provided prng (assuming the provided prng is seedable).
  • seed: pseudorandom number generator seed.
  • state: a Uint32Array containing pseudorandom number generator state. If provided, the function ignores the seed option.
  • copy: boolean indicating whether to copy a provided pseudorandom number generator state. Setting this option to false allows sharing state between two or more pseudorandom number generators. Setting this option to true ensures that an underlying generator has exclusive control over its internal state. Default: true.

To use a custom PRNG as the underlying source of uniformly distributed pseudorandom numbers, set the prng option.

var Float64Array = require( '@stdlib/array-float64' );
var minstd = require( '@stdlib/random-base-minstd' );

var opts = {
    'prng': minstd.normalized
};

var out = new Float64Array( 10 );
weibull( out.length, [ 2.0 ], 0, [ 5.0 ], 0, out, 1, opts );

To seed the underlying pseudorandom number generator, set the seed option.

var Float64Array = require( '@stdlib/array-float64' );

var opts = {
    'seed': 12345
};

var out = new Float64Array( 10 );
weibull( out.length, [ 2.0 ], 0, [ 5.0 ], 0, out, 1, opts );

weibull.ndarray( N, k, sk, ok, lambda, sl, ol, out, so, oo[, options] )

Fills a strided array with pseudorandom numbers drawn from a Weibull distribution using alternative indexing semantics.

var Float64Array = require( '@stdlib/array-float64' );

// Create an array:
var out = new Float64Array( 10 );

// Fill the array with pseudorandom numbers:
weibull.ndarray( out.length, [ 2.0 ], 0, 0, [ 5.0 ], 0, 0, out, 1, 0 );

The function has the following additional parameters:

  • ok: starting index for k.
  • ol: starting index for lambda.
  • oo: starting index for out.

While typed array views mandate a view offset based on the underlying buffer, the offset parameters support indexing semantics based on starting indices. For example, to access every other value in out starting from the second value,

var out = [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ];

weibull.ndarray( 3, [ 2.0 ], 0, 0, [ 5.0 ], 0, 0, out, 2, 1 );

The function accepts the same options as documented above for weibull().

Notes

  • If N <= 0, both functions leave the output array unchanged.
  • Both functions support array-like objects having getter and setter accessors for array element access.

Examples

var zeros = require( '@stdlib/array-zeros' );
var zeroTo = require( '@stdlib/array-base-zero-to' );
var logEach = require( '@stdlib/console-log-each' );
var weibull = require( '@stdlib/random-strided-weibull' );

// Specify a PRNG seed:
var opts = {
    'seed': 1234
};

// Create an array:
var x1 = zeros( 10, 'float64' );

// Create a list of indices:
var idx = zeroTo( x1.length );

// Fill the array with pseudorandom numbers:
weibull( x1.length, [ 2.0 ], 0, [ 5.0 ], 0, x1, 1, opts );

// Create a second array:
var x2 = zeros( 10, 'generic' );

// Fill the array with the same pseudorandom numbers:
weibull( x2.length, [ 2.0 ], 0, [ 5.0 ], 0, x2, 1, opts );

// Print the array contents:
logEach( 'x1[%d] = %.2f; x2[%d] = %.2f', idx, x1, idx, x2 );

Notice

This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.

For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.

Community

Chat


License

See LICENSE.

Copyright

Copyright © 2016-2024. The Stdlib Authors.

random-strided-weibull's People

Contributors

stdlib-bot avatar

Stargazers

 avatar

Watchers

 avatar  avatar  avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.