GithubHelp home page GithubHelp logo

honeysql's Introduction

Honey SQL

SQL as Clojure data structures. Build queries programmatically -- even at runtime -- without having to bash strings together.

Build

Build Status Dependencies Status

Leiningen Coordinates

Clojars Project

Usage

(require '[honeysql.core :as sql]
         '[honeysql.helpers :refer :all])

Everything is built on top of maps representing SQL queries:

(def sqlmap {:select [:a :b :c]
             :from [:foo]
             :where [:= :f.a "baz"]})

format turns maps into clojure.java.jdbc-compatible, parameterized SQL:

(sql/format sqlmap)
=> ["SELECT a, b, c FROM foo WHERE (f.a = ?)" "baz"]

You can build up SQL maps yourself or use helper functions. build is the Swiss Army Knife helper. It lets you leave out brackets here and there:

(sql/build :select :*
           :from :foo
           :where [:= :f.a "baz"])
=> {:where [:= :f.a "baz"], :from [:foo], :select [:*]}

You can provide a "base" map as the first argument to build:

(sql/build sqlmap :offset 10 :limit 10)
=> {:limit 10, :offset 10, :select [:a :b :c], :where [:= :f.a "baz"], :from [:foo]}

There are also functions for each clause type in the honeysql.helpers namespace:

(-> (select :a :b :c)
    (from :foo)
    (where [:= :f.a "baz"]))

Order doesn't matter:

(= (-> (select :*) (from :foo))
   (-> (from :foo) (select :*)))
=> true

When using the vanilla helper functions, new clauses will replace old clauses:

(-> sqlmap (select :*))
=> {:from [:foo], :where [:= :f.a "baz"], :select (:*)}

To add to clauses instead of replacing them, use merge-select, merge-where, etc.:

(-> sqlmap
    (merge-select :d :e)
    (merge-where [:> :b 10])
    sql/format)
=> ["SELECT a, b, c, d, e FROM foo WHERE (f.a = ? AND b > 10)" "baz"]

where will combine multiple clauses together using and:

(-> (select :*)
    (from :foo)
    (where [:= :a 1] [:< :b 100])
    sql/format)
=> ["SELECT * FROM foo WHERE (a = 1 AND b < 100)"]

Inserts are supported in two patterns. In the first pattern, you must explicitly specify the columns to insert, then provide a collection of rows, each a collection of column values:

(-> (insert-into :properties)
    (columns :name :surname :age)
    (values
     [["Jon" "Smith" 34]
      ["Andrew" "Cooper" 12]
      ["Jane" "Daniels" 56]])
    sql/format)
=> ["INSERT INTO properties (name, surname, age)
     VALUES (?, ?, 34), (?, ?, 12), (?, ?, 56)"
     "Jon" "Smith" "Andrew" "Cooper" "Jane" "Daniels"]

Alternately, you can simply specify the values as maps; the first map defines the columns to insert, and the remaining maps must have the same set of keys and values:

(-> (insert-into :properties)
    (values [{:name "John" :surname "Smith" :age 34}
             {:name "Andrew" :surname "Cooper" :age 12}
             {:name "Jane" :surname "Daniels" :age 56}])
    sql/format)
=> ["INSERT INTO properties (age, name, surname) 
     VALUES (34, ?, ?), (12, ?, ?), (56, ?, ?)" 
    "John" "Smith" 
    "Andrew" "Cooper" 
    "Jane" "Daniels"]

The column values do not have to be literals, they can be nested queries:

(let [user-id 12345
      role-name "user"]
  (-> (insert-into :user_profile_to_role)
      (values [{:user_profile_id user-id
                :role_id         (-> (select :id)
                                     (from :role)
                                     (where [:= :name role-name]))}])
      sql/format))

=> ["INSERT INTO user_profile_to_role (user_profile_id, role_id) 
     VALUES (12345, (SELECT id FROM role WHERE name = ?))" 
    "user"]

Updates are possible too (note the double S in sset to avoid clashing with clojure.core/set):

(-> (update :films)
    (sset {:kind "dramatic"
           :watched true})
    (where [:= :kind "drama"])
    sql/format)
=> ["UPDATE films SET watched = TRUE, kind = ? WHERE kind = ?" "dramatic" "drama"]

Deletes look as you would expect:

(-> (delete-from :films)
    (where [:<> :kind "musical"])
    sql/format)
=> ["DELETE FROM films WHERE kind <> ?" "musical"]

Queries can be nested:

(-> (select :*)
    (from :foo)
    (where [:in :foo.a (-> (select :a) (from :bar))])
    sql/format)
=> ["SELECT * FROM foo WHERE (foo.a IN (SELECT a FROM bar))"]

Queries may be united within a :union or :union-all keyword:

(sql/format {:union [(-> (select :*) (from :foo))
                     (-> (select :*) (from :bar))]})
=> ["SELECT * FROM foo UNION SELECT * FROM bar"]

Keywords that begin with % are interpreted as SQL function calls:

(-> (select :%count.*) (from :foo) sql/format)
=> ["SELECT count(*) FROM foo"]
(-> (select :%max.id) (from :foo) sql/format)
=> ["SELECT max(id) FROM foo"]

Keywords that begin with ? are interpreted as bindable parameters:

(-> (select :id)
    (from :foo)
    (where [:= :a :?baz])
    (sql/format :params {:baz "BAZ"}))
=> ["SELECT id FROM foo WHERE a = ?" "BAZ"]

There are helper functions and data literals for SQL function calls, field qualifiers, raw SQL fragments, and named input parameters:

(-> (select (sql/call :foo :bar) (sql/qualify :foo :a) (sql/raw "@var := foo.bar"))
    (from :foo)
    (where [:= :a (sql/param :baz)]))
=> {:where [:= :a #sql/param :baz], :from (:foo), :select (#sql/call [:foo :bar] :foo.a #sql/raw "@var := foo.bar")}

(sql/format *1 :params {:baz "BAZ"})
=> ["SELECT FOO(bar), foo.a, @var := foo.bar FROM foo WHERE a = ?" "BAZ"]

To quote identifiers, pass the :quoting keyword option to format. Valid options are :ansi (PostgreSQL), :mysql, or :sqlserver:

(-> (select :foo.a)
    (from :foo)
    (where [:= :foo.a "baz"])
    (sql/format :quoting :mysql))
=> ["SELECT `foo`.`a` FROM `foo` WHERE `foo`.`a` = ?" "baz"]

To issue a locking select, add a :lock to the query or use the lock helper. The lock value must be a map with a :mode value. The built-in modes are the standard :update (FOR UPDATE) or the vendor-specific :mysql-share (LOCK IN SHARE MODE) or :postresql-share (FOR SHARE). The lock map may also provide a :wait value, which if false will append the NOWAIT parameter, supported by PostgreSQL.

(-> (select :foo.a)
    (from :foo)
    (where [:= foo.a "baz"])
    (lock :mode :update)
    (sql/format))
=> ["SELECT foo.a FROM foo WHERE foo.a = ? FOR UPDATE" "baz"]

To support novel lock modes, implement the format-lock-clause multimethod.

To be able to use dashes in quoted names, you can pass :allow-dashed-names true as an argument to the format function.

(format
  {:select [:f.foo-id :f.foo-name]
   :from [[:foo-bar :f]]
   :where [:= :f.foo-id 12345]}
  :allow-dashed-names? true
  :quoting :ansi)
=> ["SELECT \"f\".\"foo-id\", \"f\".\"foo-name\" FROM \"foo-bar\" \"f\" WHERE \"f\".\"foo-id\" = 12345"]

Here's a big, complicated query. Note that Honey SQL makes no attempt to verify that your queries make any sense. It merely renders surface syntax.

(-> (select :f.* :b.baz :c.quux [:b.bla "bla-bla"]
            (sql/call :now) (sql/raw "@x := 10"))
    (modifiers :distinct)
    (from [:foo :f] [:baz :b])
    (join :draq [:= :f.b :draq.x])
    (left-join [:clod :c] [:= :f.a :c.d])
    (right-join :bock [:= :bock.z :c.e])
    (where [:or
             [:and [:= :f.a "bort"] [:not= :b.baz (sql/param :param1)]]
             [:< 1 2 3]
             [:in :f.e [1 (sql/param :param2) 3]]
             [:between :f.e 10 20]])
    (group :f.a)
    (having [:< 0 :f.e])
    (order-by [:b.baz :desc] :c.quux [:f.a :nulls-first])
    (limit 50)
    (offset 10))
=> {:select [:f.* :b.baz :c.quux [:b.bla "bla-bla"]
             (sql/call :now) (sql/raw "@x := 10")]
    :modifiers [:distinct]
    :from [[:foo :f] [:baz :b]]
    :join [:draq [:= :f.b :draq.x]]
    :left-join [[:clod :c] [:= :f.a :c.d]]
    :right-join [:bock [:= :bock.z :c.e]]
    :where [:or
             [:and [:= :f.a "bort"] [:not= :b.baz (sql/param :param1)]]
             [:< 1 2 3]
             [:in :f.e [1 (sql/param :param2) 3]]
             [:between :f.e 10 20]]
    :group-by [:f.a]
    :having [:< 0 :f.e]
    :order-by [[:b.baz :desc] :c.quux [:f.a :nulls-first]
    :limit 50
    :offset 10}

(sql/format *1 {:param1 "gabba" :param2 2})
=> ["SELECT DISTINCT f.*, b.baz, c.quux, b.bla AS \"bla-bla\", NOW(), @x := 10
     FROM foo AS f, baz AS b
     INNER JOIN draq ON f.b = draq.x
     LEFT JOIN clod AS c ON f.a = c.d
     RIGHT JOIN bock ON bock.z = c.e
     WHERE ((f.a = ? AND b.baz <> ?)
           OR (1 < 2 AND 2 < 3)
           OR (f.e IN (1, ?, 3))
           OR f.e BETWEEN 10 AND 20)
     GROUP BY f.a
     HAVING 0 < f.e
     ORDER BY b.baz DESC, c.quux, f.a NULLS FIRST
     LIMIT 50
     OFFSET 10 "
     "bort" "gabba" 2]

;; Printable and readable
(= *2 (read-string (pr-str *2)))
=> true

Extensibility

You can define your own function handlers for use in where:

(require '[honeysql.format :as fmt])

(defmethod fmt/fn-handler "betwixt" [_ field lower upper]
  (str (fmt/to-sql field) " BETWIXT "
       (fmt/to-sql lower) " AND " (fmt/to-sql upper)))

(-> (select :a) (where [:betwixt :a 1 10]) sql/format)
=> ["SELECT a WHERE a BETWIXT 1 AND 10"]

You can also define your own clauses:

;; Takes a MapEntry of the operator & clause data, plus the entire SQL map
(defmethod fmt/format-clause :foobar [[op v] sqlmap]
  (str "FOOBAR " (fmt/to-sql v)))

(sql/format {:select [:a :b] :foobar :baz})
=> ["SELECT a, b FOOBAR baz"]

(require '[honeysql.helpers :refer [defhelper]])

;; Defines a helper function, and allows 'build' to recognize your clause
(defhelper foobar [m args]
  (assoc m :foobar (first args)))

(-> (select :a :b) (foobar :baz) sql/format)
=> ["SELECT a, b FOOBAR baz"]

If you do implement a clause or function handler, consider submitting a pull request so others can use it, too.

TODO

  • Create table, etc.

Extensions

License

Copyright © 2012-2016 Justin Kramer

Distributed under the Eclipse Public License, the same as Clojure.

honeysql's People

Contributors

akhudek avatar cloojure avatar csummers avatar ddellacosta avatar djpowell avatar doffltmiw avatar emidln avatar gfredericks avatar hlship avatar icambron avatar jakemcc avatar jkk avatar jrdoane avatar justindell avatar loganlinn avatar michaelblume avatar mishok13 avatar rnewman avatar seancorfield avatar stathissideris avatar stuarth avatar

Watchers

 avatar  avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.