GithubHelp home page GithubHelp logo

projet_scientific's Introduction

Projet_scientific

import numpy as np import scipy as scp import matplotlib.pyplot as plt from sklearn import neighbors from sklearn.model_selection import TimeSeriesSplit from sklearn.metrics import mean_squared_error import spacepy.time as spt import spacepy.omni as om from sklearn import tree from sklearn import svm from sklearn.ensemble import RandomForestRegressor from sklearn.datasets import make_regression import graphviz

On charge une bonne période de données

ticks = spt.tickrange('1980-01-01T00:00:00', '2017-01-01T00:00:00', deltadays = 1./24.) d = om.get_omni(ticks)

Kp = d['Kp'] Bz = d['BzIMF'] V = d['velo'] N = d['dens'] dates = d['ticks'].UTC

for d in (Kp, Bz, V, N): plt.figure() plt.plot(dates, d)

input_data = np.stack((Bz,V,N)).T output_data = Kp[:,None]

from datetime import datetime test_min, test_max = datetime(2003,10,22), datetime(2003,11,5) in_test = np.logical_and(dates > test_min, dates < test_max) train_index, = np.nonzero(np.logical_not(in_test)) test_index, = np.nonzero(in_test)

X_train, X_test = input_data[train_index], input_data[test_index] y_train, y_test = output_data[train_index], output_data[test_index]

plt.plot(dates[test_index], y_test) plt.figure() plt.plot(dates[train_index], y_train)

knn = neighbors.KNeighborsRegressor(10, weights='distance') model = knn.fit(X_train, y_train)

p_test = model.predict(X_test) plt.plot(dates[test_index], y_test) plt.plot(dates[test_index], p_test) plt.legend(("Kp réel", "Prédiction")) print("RMSE =" , np.sqrt(mean_squared_error(y_test, p_test)))

p_test = model.predict(X_test) plt.plot(dates[test_index], p_test) plt.plot(dates[test_index], y_test) plt.legend(("Kp réel", "Prédiction")) print(np.shape(p_test)) np.sqrt(mean_squared_error(y_test, p_test))

tss = TimeSeriesSplit(n_splits=100)

Évaluation de l'erreur du model:

errors = [] m_dates = [] for train_index, test_index in tss.split(input_data, output_data): X_train, X_test = input_data[train_index], input_data[test_index] y_train, y_test = output_data[train_index], output_data[test_index] dates_test = dates[test_index] model = knn.fit(X_train, y_train) p_test = model.predict(X_test) error = np.sqrt(mean_squared_error(y_test, p_test)) errors.append(error) m_dates.append(dates_test[len(test_index)//2]) #plt.figure() #plt.plot(dates_test, y_test) #plt.plot(dates_test, p_test)

plt.plot(m_dates,errors)

Évolution de l'erreur moyenne en fonction du temps.

En 1994/1995, deux nouveaux satellites (ACE,WIND) sont mis en services.

Ce qui explique la forte baisse de l'erreur (moins de trous dans les données).

On change la période de données après la partie 1 parce qu'on sait la carence de ACE et WIND dans l'estimateur

ticks_change = spt.tickrange('1980-01-01T00:00:00', '2017-01-01T00:00:00', deltadays = 1./24.) d1 = om.get_omni(ticks_change)

Kp1 = d1['Kp'] Bz1 = d1['BzIMF'] V1 = d1['velo'] N1 = d1['dens'] dates1 = d1['ticks'].UTC

for d in (Kp1, Bz1, V1, N1): plt.figure() plt.plot(dates1, d)

input_data1 = np.stack((Bz1,V1,N1)).T output_data1 = Kp1[:,None]

Sélection d'une période de test:

test_min, test_max = datetime(2005,10,22), datetime(2005,11,5) in_test = np.logical_and(dates1 > test_min, dates1 < test_max) train_index, = np.nonzero(np.logical_not(in_test)) test_index, = np.nonzero(in_test)

X_train1, X_test1 = input_data1[train_index], input_data1[test_index] y_train1, y_test1 = output_data1[train_index], output_data1[test_index]

plt.plot(dates1[test_index], y_test1) print(np.shape(dates1[test_index])) plt.figure() plt.plot(dates1[train_index], y_train1)

model_svm = svm.LinearSVR().fit(X_train1, y_train1.ravel())

s_test = model_svm.predict(X_test1) plt.plot(dates1[test_index], y_test1) plt.plot(dates1[test_index], s_test) plt.legend(("Kp réel", "Prédiction selon svm")) print("RMSE:", np.sqrt(mean_squared_error(y_test1, s_test)))

tss = TimeSeriesSplit(n_splits=100)

Évaluation de l'erreur du model:

errors = [] m_dates = [] for train_index, test_index in tss.split(input_data1, output_data1): X_train1, X_test1 = input_data1[train_index], input_data1[test_index] y_train1, y_test1 = output_data1[train_index], output_data1[test_index] dates_test = dates1[test_index] model_svm = svm.LinearSVR().fit(X_train1, y_train1.ravel()) s_test = model_svm.predict(X_test1) error = np.sqrt(mean_squared_error(y_test1, s_test)) errors.append(error) m_dates.append(dates_test[len(test_index)//2]) #plt.figure() #plt.plot(dates_test, y_test) #plt.plot(dates_test, p_test)

plt.plot(m_dates,errors)

On charge une bonne période de données

ticks = spt.tickrange('2012-01-01T00:00:00', '2017-01-01T00:00:00', deltadays = 1./24.) d = om.get_omni(ticks) Kp = d['Kp'] Bz = d['BzIMF'] V = d['velo'] N = d['dens'] dates = d['ticks'].UTC

input_data = np.stack((Bz,V,N)).T output_data = Kp[:,None]

Sélection d'une période de test:

from datetime import datetime test_min, test_max = datetime(2015,10,22), datetime(2015,10,23) in_test = np.logical_and(dates > test_min, dates < test_max) train_index, = np.nonzero(np.logical_not(in_test)) test_index, = np.nonzero(in_test)

X_train, X_test = input_data[train_index], input_data[test_index] y_train, y_test = output_data[train_index], output_data[test_index]

plt.plot(dates[test_index], y_test) print(np.shape(y_test)) plt.figure() plt.plot(dates[train_index], y_train)

SVR = svm.SVR(kernel='rbf', tol=1e-5,cache_size=7000,gamma='scale') model2 = SVR.fit(X_train, y_train.ravel())

pred = model2.predict(X_test) plt.plot(dates[test_index], y_test) plt.plot(dates[test_index], pred) plt.legend(("Kp réel", "Prédiction")) print(np.shape(pred)) print(np.shape(y_test)) print("RMSE=",np.sqrt(mean_squared_error(y_test, pred)))

plt.plot(dates[test_index], y_test) plt.plot(dates[test_index], pred) plt.legend(("Kp réel", "Prédiction")) print(np.shape(pred)) print(np.shape(y_test)) print("RMSE=",np.sqrt(mean_squared_error(y_test, pred)))

tss = TimeSeriesSplit(n_splits=1000)

Évaluation de l'erreur du model:

errors = [] m_dates = [] for train_index, test_index in tss.split(input_data, output_data): X_train, X_test = input_data[train_index], input_data[test_index] y_train, y_test = output_data[train_index], output_data[test_index] dates_test = dates[test_index] model = knn.fit(X_train, y_train) p_test = model.predict(X_test) error = np.sqrt(mean_squared_error(y_test, p_test)) errors.append(error) m_dates.append(dates_test[len(test_index)//2]) #plt.figure() #plt.plot(dates_test, y_test) #plt.plot(dates_test, p_test)

plt.plot(m_dates,errors)

Évolution de l'erreur moyenne en fonction du temps.

En 1994/1995, deux nouveaux satellites (ACE,WIND) sont mis en services.

Ce qui explique la forte baisse de l'erreur (moins de trous dans les données).

On charge une bonne période de données

ticks = spt.tickrange('1980-01-01T00:00:00', '2017-01-01T00:00:00', deltadays = 1./24.) d = om.get_omni(ticks)

Kp = d['Kp'] Bz = d['BzIMF'] V = d['velo'] N = d['dens'] dates = d['ticks'].UTC

input_data = np.stack((Bz,V,N)).T output_data = Kp[:,None]

Sélection d'une période de test:

from datetime import datetime test_min, test_max = datetime(2014,10,22), datetime(2014,11,5) in_test = np.logical_and(dates > test_min, dates < test_max) train_index, = np.nonzero(np.logical_not(in_test)) test_index, = np.nonzero(in_test)

X_train, X_test = input_data[train_index], input_data[test_index] y_train, y_test = output_data[train_index], output_data[test_index]

plt.plot(dates[test_index], y_test) print(np.shape(dates[test_index]))

clf = tree.DecisionTreeRegressor() clf = clf.fit(X_test,y_test )

dot_data=tree.export_graphviz(clf) graph = graphviz.Source(dot_data)

graph

regr = tree.DecisionTreeRegressor() model=regr.fit(X_train,y_train) p_test = model.predict(X_test) plt.plot(dates[test_index], y_test) plt.plot(dates[test_index], p_test) plt.legend(("Kp réel", "Prédiction")) print("RMSE=", np.sqrt(mean_squared_error(y_test, p_test)))

tss = TimeSeriesSplit(n_splits=100)

Évaluation de l'erreur du model:

errors = [] m_dates = [] for train_index, test_index in tss.split(input_data, output_data): X_train, X_test = input_data[train_index], input_data[test_index] y_train, y_test = output_data[train_index], output_data[test_index] dates_test = dates[test_index] model = regr.fit(X_train, y_train) p_test = model.predict(X_test) error = np.sqrt(mean_squared_error(y_test, p_test)) errors.append(error) m_dates.append(dates_test[len(test_index)//2]) #plt.figure() #plt.plot(dates_test, y_test) #plt.plot(dates_test, p_test)

plt.plot(m_dates,errors)

On charge une bonne période de données

ticks = spt.tickrange('1980-01-01T00:00:00', '2017-01-01T00:00:00', deltadays = 1./24.) d = om.get_omni(ticks)

Kp = d['Kp'] Bz = d['BzIMF'] V = d['velo'] N = d['dens'] dates = d['ticks'].UTC

input_data = np.stack((Bz,V,N)).T output_data = Kp[:,None]

Sélection d'une période de test:

from datetime import datetime test_min, test_max = datetime(2014,10,22), datetime(2014,11,5) in_test = np.logical_and(dates > test_min, dates < test_max) train_index, = np.nonzero(np.logical_not(in_test)) test_index, = np.nonzero(in_test)

X_train, X_test = input_data[train_index], input_data[test_index] y_train, y_test = output_data[train_index], output_data[test_index]

plt.plot(dates[test_index], y_test) print(np.shape(dates[test_index]))

regr = RandomForestRegressor(random_state=1, n_estimators=10) model=regr.fit(X_train, y_train.ravel()) p_test = model.predict(X_test) plt.plot(dates[test_index], y_test) plt.plot(dates[test_index], p_test) plt.legend(("Kp réel", "Prédiction"))

print("RMSE= ",np.sqrt(mean_squared_error(y_test, p_test)))

tss = TimeSeriesSplit(n_splits=100)

Évaluation de l'erreur du model:

errors = [] m_dates = [] for train_index, test_index in tss.split(input_data, output_data): X_train, X_test = input_data[train_index], input_data[test_index] y_train, y_test = output_data[train_index], output_data[test_index] dates_test = dates[test_index] model = regr.fit(X_train, y_train.ravel()) p_test = model.predict(X_test) error = np.sqrt(mean_squared_error(y_test, p_test)) errors.append(error) m_dates.append(dates_test[len(test_index)//2]) #plt.figure() #plt.plot(dates_test, y_test) #plt.plot(dates_test, p_test)

plt.plot(m_dates,errors)

projet_scientific's People

Contributors

vnale avatar

Watchers

 avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.