GithubHelp home page GithubHelp logo

ylochman / babelcalib Goto Github PK

View Code? Open in Web Editor NEW
84.0 5.0 14.0 24.8 MB

BabelCalib: A Universal Approach to Calibrating Central Cameras. In ICCV (2021)

Home Page: https://ylochman.github.io/babelcalib

License: Other

MATLAB 87.31% M 0.93% C 9.60% C++ 2.16%
camera-calibration camera-geometry fisheye catadioptric-cameras

babelcalib's Introduction

BabelCalib: A Universal Approach to Calibrating Central Cameras

Paper Datasets Conference Poster Youtube

This repository contains the MATLAB implementation of the BabelCalib calibration framework.

Method overview and result. (left) BabelCalib pipeline: the camera model proposal step ensures a good initialization (right) example result showing residuals of reprojected corners of test images.


Projection of calibration target from estimated calibration. Detected corners are red crosses, target projected using initial calibration are blue squares and using the final calibration are cyan circles.

Description

BabelCalib is a calibration framework that can estimate camera models for all types of central projection cameras. Calibration is robust and fully automatic. BabelCalib provides models for pinhole cameras with additive distortion as well as omni-directional cameras and catadioptric rigs. The supported camera models are listed under the solvers directory. BabelCalib supports calibration targets made of a collection of calibration boards, i.e., multiple planar targets. The method is agnostic to the pattern type on the calibration boards. It is robust to inaccurately localized corners, outlying detections and occluded targets.

Table of Contents


You need to clone the repository. The required library Visual Geometry Toolkit is added as a submodule. Please clone the repository with submodules:

git clone --recurse-submodules https://github.com/ylochman/babelcalib

If you already cloned the project without submodules, you can run

git submodule update --init --recursive 

Calibration is performed by the function calibrate.m. The user provides the 2D<->3D correspondence of the corner detections in the captured images as well as the coordinates of the calibration board fiducials and the absolute poses of the calibration boards. Any calibration board of the target may be partially or fully occluded in a calibration image. The camera model is returned as well as diagnostics about the calibration.

function [model, res, corners, boards] = calibrate(corners, boards, imgsize, varargin)

Parameters:

  • corners : type corners
  • boards : type boards
  • imgsize : 1x2 array specifying the height and width of the images; all images in a capture are assumed to have the same dimensions.
  • varargin : optional arguments

Returns

BabelCalib adopts the train-test set methodology for fitting and evaluation. The training set contains the images used for calibration, and the test set contains held-out images for evaluation. Evaluating a model on test-set images demonstrates how well a calibration generalizes to unseen imagery. During testing, the intriniscs are kept fixed and only the poses of the camera are regressed. The RMS re-projection error is used to assess calibration quality. The poses are estimated by get_poses.m:

function [model, res, corners, boards] = get_poses(intrinsics, corners, boards, imgsize, varargin)

Parameters:

  • intrinsics : type model
  • corners : type corners
  • boards : type boards
  • imgsize : 1x2 array specifies the height and width of the images; all the images are assumed to have the same dimensions
  • varargin : optional arguments

Returns

Contains the set of 2D<->3D correspondences of the calibration board fiducials to the detected corners in each image. Here, we let N be the number of images; Kn be the number of detected corners in the n-th image, where (n=1,...,N); and B be the number of planar calibration boards.

field data type description
x 2xKn array 2D coordinates specifying the detected corners
cspond 2xKn array correspondences, where each column is a correspondence and the first row contains the indices to points and the second row contains indices to calibration board fiducials

Contains the set of absolute poses for each of the B calibration boards of the target, where (b=1,...,B) indexes the calibration boards. Also specifies the coordinates of the fiducials on each of the calibration boards.

field data type description
Rt 3x4 array absolute orientation of each pose is encoded in the 3x4 pose matrix
X 2xKb array 2D coordinates of the fiducials on board b of the target. The coordinates are specified with respect to the 2D coordinate system attached to each board

Contains the intrinsics and extrinsics of the regressed camera model. The number of parameters of the back-projection or projection model, denoted C, depends on the chosen camera model and model complexity.

field data type description
proj_model str name of the target projection model
proj_params 1xC array parameters of the projection/back-projection function
K 3x3 array camera calibration matrix (relating to A in the paper: K = inv(A))
Rt 3x4xN array camera poses stacked along the array depth

Contains the information about the residuals, loss and initialization (minimal solution). Here, we let K be the total number of corners in all the images.

field data type description
loss double loss value
ir double inlier ratio
reprojerrs 1xK array reprojection errors
rms double root mean square reprojection error
wrms double root mean square weighted reprojection error (Huber weights)
info type info

Contains additional information about the residuals, loss and initialization (minimal solution).

field data type description
dx 2xK array re-projection difference vectors: dx = x - x_hat
w 1xK array Huber weights on the norms of dx
residual 2xK array residuals: residual = w .* dx
cs 1xK array (boolean) consensus set indicators (1 if inlier, 0 otherwise)
min_model type model model corresponding to the minimal solution
min_res type res residual info corresponding to the minimal solution

cfg contains the optional configurations. Default values for the optional parameters are loaded from parse_cfg.m. These values can be changed by using the varargin parameter. Parameters values passed in by varargin take precedence. The varargin format is 'param_1', value_1, 'param_2', value_2, .... The parameter descriptions are grouped by which component of BabelCalib they change.

Solver configurations:

  • final_model - the selected camera model (default: 'kb')
  • final_complexity - a degree of the polynomial if the final model is polynomial, otherwise ignored (default: 4)

Sampler configurations:

  • min_trial_count - minimum number of iterations (default: 20)
  • max_trial_count - maximum number of iterations (default: 50)
  • max_num_retries - maximum number of sampling tries in the case of a solver failure (default: 50)
  • confidence - confidence rate (default: 0.995)
  • sample_size - the number of 3D<->2D correspondences that are sampled for each RANSAC iteration (default: 14)

RANSAC configurations:

  • display - toggles the display of verbose output of intermediate steps (default: true)
  • display_freq - frequency of output during the iterations of robust sampling. (default: 1)
  • irT - minimum inlier ratio to perform refinement (default: 0)

Refinement configurations:

  • reprojT - reprojection error threshold (default: 1.5)
  • max_iter - maximum number of iterations on the refinement (default: 50)

BabelCalib provides a convenience wrapper (see calib_run_plane.m and calib_run_cube.m) for running the calibration calibrate.m with a training set and evaluating get_poses.m with a test set.

The Deltille detector is a robust deltille and checkerboard detector. It comes with detector library, example detector code, and MATLAB bindings. BabelCalib provides functions for calibration and evaluation using the Deltille software's outputs. Calibration from Deltille detections requires format conversion which is peformed by import_ODT.m. A complete example of using calibrate and get_poses with import_ODT is provided in calib_run_plane_deltille.m and calib_run_cube_deltille.m.

If you find this work useful in your research, please consider citing:

@InProceedings{Lochman-ICCV21,
    title     = {BabelCalib: A Universal Approach to Calibrating Central Cameras},
    author    = {Lochman, Yaroslava and Liepieshov, Kostiantyn and Chen, Jianhui and Perdoch, Michal and Zach, Christopher and Pritts, James},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    year      = {2021},
    pages     = {15253-15262}
}

The software is licensed under the MIT license. Please see LICENSE for details.

babelcalib's People

Contributors

pmoulon avatar ylochman avatar

Stargazers

 avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar

Watchers

 avatar  avatar  avatar  avatar  avatar

babelcalib's Issues

CAM.make_diag_normalization

After running the program, I get the following error, how do I fix it?

"Undefined variable "CAM" or class "CAM.make_diag_normalization".

Error in calibrate (line 52)
A = inv(CAM.make_diag_normalization(imcenter));

High RMS-error when using multiple boards

Hi,
I am currently trying to design my own multi-view calibration target. I have a cube (200x200x200) mm with six AprilTag checkerboards attached. Similar to your "ov_cube" example. The detection of the corners is done with the deltille detector. The detection works very well so far.

cube
cube calibration target

detected_corners_Small
corner detection on two sides

About the problem:
I calibrated the intrinsics for my camera with calibrate.m and wanted to solve the poses with get_poses.m afterwards. This works as long as the images only contain one side of the cube. As soon as there are points from two or three sides, the RMS error gets very large (i.e. 30+-30).
I assume that I have defined the pose matrices incorrectly in the .tp file.
I have already tried different pose matrices, but the error does not get smaller.
How exactly did you define the pose matrices of the boards in the .tp file?
And where is the origin of the world coordinate system?

Here is my cube.dsc file and two versions of the .tp file. One .tp file has the 0,0 point of the 0 th coordinate system as orgin and the other the cube edge of the 0 th side.

cube11x11_v1_tp.txt
cube11x11_v2_tp.txt
cube11x11_dsc.txt

I have tried to visulize your cube and mine. Here are the cubes shown with the corresponding coordinate systems for each board
ov_cube_vis_small
ov_cube
my_cube_vis_small
my_cube

I really hope that you can help me. Thank you very much!

Calibrating with deltille and generating a dsc file

Hi,

Thank you for sharing the code. I am having problems getting deltille to work correctly, I can reproduce your .orpc files but for my own Kalibr calibration target I can't get it to work. I have adjusted the DSC file, but am having the issue that corner.isordered in deltille is false for all corners. It seems like it's able to discover corners, but not able to distinguish which ones are part of the aruco markers.

frame000700

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.